checks
checks

Reputation: 229

How to collapse a pandas dataframe? (pivot table)

Say we have a DataFrame that looks like this:

day_of_week   ice_cream     count   proportion
0   Friday    vanilla       638     0.094473
1   Friday    chocolate     2048    0.663506
2   Friday    strawberry    4088    0.251021
3   Monday    vanilla       448     0.079736
4   Monday    chocolate     2332    0.691437
5   Monday    strawberry    441     0.228828
6   Saturday  vanilla       24      0.073350
7   Saturday  chocolate     244     0.712930  ...   ...

I want a new DataFrame that collapses onto day_of_week as an index so it looks like this:

    day_of_week vanilla    chocolate   strawberry
0   Friday      0.094473   0.663506    0.251021 
1   Monday      0.079736   0.691437    0.228828
2   Saturday    ...        ...         ...

What's the cleanest way I can implement this?

Upvotes: 6

Views: 4117

Answers (4)

piRSquared
piRSquared

Reputation: 294308

Using set_index and unstack

df.set_index(['day_of_week', 'ice_cream']).proportion.unstack() \
  .reset_index().rename_axis([None], 1)

  day_of_week  chocolate  strawberry   vanilla
0      Friday   0.663506    0.251021  0.094473
1      Monday   0.691437    0.228828  0.079736
2    Saturday   0.712930         NaN  0.073350

timing vs pivot_table

enter image description here

Upvotes: 1

Serenity
Serenity

Reputation: 36645

Use pivot table:

import pandas as pd
import numpy as np

df = pd.DataFrame({'day_of_week':['Friday','Sunday','Monday','Sunday','Friday','Friday'], \
'count':[200,300,100,50,110,90], 'ice_cream':['choco','vanilla','vanilla','choco','choco','straw'],\
'proportion':[.9,.1,.2,.3,.8,.4]})

print df

# If you like replace np.nan with zero
tab = pd.pivot_table(df,index='day_of_week',columns='ice_cream', values=['proportion'],fill_value=np.nan)
print tab

Output:

   count day_of_week ice_cream  proportion
0    200      Friday     choco         0.9
1    300      Sunday   vanilla         0.1
2    100      Monday   vanilla         0.2
3     50      Sunday     choco         0.3
4    110      Friday     choco         0.8
5     90      Friday     straw         0.4
            proportion              
ice_cream        choco straw vanilla
day_of_week                         
Friday            0.85   0.4     NaN
Monday             NaN   NaN     0.2
Sunday            0.30   NaN     0.1

Upvotes: 1

Sebastian Wozny
Sebastian Wozny

Reputation: 17506

df.pivot_table is the correct solution:

In[31]: df.pivot_table(values='proportion', index='day_of_week', columns='ice_cream').reset_index()
Out[31]: 
    ice_cream day_of_week  chocolate  strawberry   vanilla
0              Friday   0.663506    0.251021  0.094473
1              Monday   0.691437    0.228828  0.079736
2            Saturday   0.712930         NaN  0.073350

If you leave out reset_index() it will actually return an indexed dataframe, which might be more useful for you.

Note that a pivot table necessarily performs a dimensionality reduction when the values column is not a function of the tuple (index, columns). If there are multiple (index, columns) pairs with different value pivot_table brings the dimensionality down to one by using an aggregation function, by default mean.

Upvotes: 4

Vaishali
Vaishali

Reputation: 38415

You are looking for pivot_table

df = pd.pivot_table(df, index='day_of_week', columns='ice_cream', values = 'proportion')

You get:

ice_cream   chocolate   strawberry  vanilla
day_of_week         
Friday      0.663506    0.251021    0.094473
Monday      0.691437    0.228828    0.079736
Saturday    0.712930    NaN         0.073350

Upvotes: 2

Related Questions