Reputation: 23
I'm new to Pandas and am attempting to create a denormalized flat dataset and would like to gauge whether it’s even possible. I’m starting with two dataframes, a parent and child, that can conceptually be joined on a single column (‘PID’).
Here is the parent dataframe:
parentData = [(1,’A’,100), (2,’B’,200)]
parentCols = [‘PID’, ‘PATTR1’, ‘PATTR1’]
parentDf = pd.DataFrame.from_records(parentData, columns=parentCols)
Parent Dataframe
PID PATTR1 PATTR2
0 1 A 100
1 2 B 200
Here is the child dataframe:
childData = [(201,1,’AA’,2100), (202,2,’BB’,2200), (203,2,’CC’,2300)]
childCols = [‘CID’, ‘PID’, ‘CATTR1’, ‘CATTR1’]
childDf = pd.DataFrame.from_records(childData, columns=childCols)
Child Dataframe
CID PID PATTR1 PATTR2
0 201 1 AA 2100
1 202 2 BB 2200
2 203 2 CC 2300
Here’s the merge of the parent and the child:
mergedDf = parentDf.merge(childDf, left_on=’PID’, right_on=’PID’, how=’outer’)
Parent merged with Child dataframe
PID PATTR1 PATTR2 CID CATTR1 CATTR2
0 1 A 100 201 AA 2100
1 2 B 200 202 BB 2200
2 2 B 200 203 CC 2300
And here’s what the desired output is:
| ???? | ????
PID PATTR1 PATTR2 | CID CATTR1 CATTR2 | CID CATTR1 CATTR2
0 1 A 100 | 201 AA 2100 |
1 2 B 200 | 202 BB 2200 | 203 CC 2300
After searching and reading through the merge, reshaping, etc. sections of the Pandas API docs, I wasn’t sure if the desired output is possible or not.
Thanks in advance for any advice and/or help, it is greatly appreciated.
Upvotes: 2
Views: 237
Reputation: 323276
After you get the mergedDf
, we create a new para 'G' and using unstack
(PS: this is long to wide question )
mergedDf.assign(G=mergedDf.groupby('PID').cumcount())\
.set_index(['PID','PATTR1','PATTR2','G'])\
.unstack().swaplevel(0,1,1)\
.sort_index(1,level=0)
Out[218]:
G 0 1
CATTR1 CATTR2 CID CATTR1 CATTR2 CID
PID PATTR1 PATTR2
1 A 100 AA 2100.0 201.0 None NaN NaN
2 B 200 BB 2200.0 202.0 CC 2300.0 203.0
Upvotes: 1