Reputation: 5126
I have a very basic function that takes the first six letters of a string. I want to apply it to a column in my DataFrame.
code:
import re
import pandas as pd
import numpy as np
dfp = pd.DataFrame({'A' : [np.NaN,np.NaN,3,4,5,5,3,1,5,np.NaN],
'B' : [1,0,3,5,0,0,np.NaN,9,0,0],
'C' : ['AA1233445','A9875', 'rmacy','Idaho Rx','Ab123455','TV192837','RX','Ohio Drugs','RX12345','USA Pharma'],
'D' : [123456,123456,1234567,12345678,12345,12345,12345678,123456789,1234567,np.NaN],
'E' : ['Assign','Unassign','Assign','Ugly','Appreciate','Undo','Assign','Unicycle','Assign','Unicorn',]})
def six_dig(thing):
return str(thing)[:6]
dfp6= dfp[dfp['C'].apply(six_dig, axis=1)]
But i get: TypeError: six_dig() got an unexpected keyword argument 'axis'
I even tried using .map()
but get the same error.
If I remove axis=1
I get: KeyError: ["STUFF"] not in index
I must be missing something super simple as I've used functions on DataFrame columns before...
Upvotes: 2
Views: 70
Reputation: 210842
If you want to use vectorized functions - here is an example:
In [35]: def my_slice(ser, start=0, end=10, step=1):
...: return ser.str.slice(start, end, step)
...:
In [36]: my_slice(dfp.C, end=6)
Out[36]:
0 AA1233
1 A9875
2 rmacy
3 Idaho
4 Ab1234
5 TV1928
6 RX
7 Ohio D
8 RX1234
9 USA Ph
Name: C, dtype: object
Upvotes: 1
Reputation: 6663
Using your example, the following works just fine:
print(dfp['C'].map(six_dig))
0 AA1233
1 A9875
2 rmacy
3 Idaho
4 Ab1234
5 TV1928
6 RX
7 Ohio D
8 RX1234
9 USA Ph
Name: C, dtype: object
Upvotes: 2
Reputation: 21552
I think you can just:
dfp6 = dfp['C'].str[:6]
this returns:
In [14]: dfp6
Out[14]:
0 AA1233
1 A9875
2 rmacy
3 Idaho
4 Ab1234
5 TV1928
6 RX
7 Ohio D
8 RX1234
9 USA Ph
Name: C, dtype: object
Upvotes: 5