Reputation: 104
I have the following function for calculating SMA in python:
import numpy as np
def calcSma(data, smaPeriod):
sma = []
count = 0
for i in xrange(data.size):
if data[i] is None:
sma.append(None)
else:
count += 1
if count < smaPeriod:
sma.append(None)
else:
sma.append(np.mean(data[i-smaPeriod+1:i+1]))
return np.array(sma)
This function works, but I find it very little pythonic. I don't like the indexing and counting I'm doing, nor the way I have to append to the list and then turn it into a numpy array before I return it.
The reason I have to deal with all these None, is because I want to return an array at the same size as the input array. This makes it easier to plot and deal with on a general level later. I can easily do stuff such as this:
sma = calcSma(data=data, smaPeriod=20)
sma2 = calcSma(data=sma, smaPeriod=10)
plt.plot(data)
plt.plot(sma)
plt.plot(sma2)
plt.show()
So, any ideas on how this can be done prettier and more pythonic?
Upvotes: 2
Views: 13415
Reputation: 89527
Here is another implementation of moving average just using standard Python library:
from collections import deque
import itertools
def moving_average(iterable, n=3):
# http://en.wikipedia.org/wiki/Moving_average
it = iter(iterable)
# create an iterable object from input argument
d = deque(itertools.islice(it, n-1))
# create deque object by slicing iterable
d.appendleft(0)
s = sum(d)
for elem in it:
s += elem - d.popleft()
d.append(elem)
yield s / n
# example on how to use it
for i in moving_average([40, 30, 50, 46, 39, 44]):
print(i)
# 40.0
# 42.0
# 45.0
# 43.0
Upvotes: -2
Reputation: 3504
Pythonic enough I hope
import numpy as np
def calcSma(data, smaPeriod):
j = next(i for i, x in enumerate(data) if x is not None)
our_range = range(len(data))[j + smaPeriod - 1:]
empty_list = [None] * (j + smaPeriod - 1)
sub_result = [np.mean(data[i - smaPeriod + 1: i + 1]) for i in our_range]
return np.array(empty_list + sub_result)
Upvotes: 5