benjano
benjano

Reputation: 379

Calculating the Work Rate in parallel computing Golang

I'm currently working on piece of work that runs image manipulation both sequentially and in parallel. I'm trying to work out the work rate as part of my Metrics however I can't find a formula online or much information about it,

Does anyone have the equation required to calculate work rate?

Edit:

This is my main function which has the metric calculations in if this helps? I know there are probably better ways for me to obtain certain data etc, but a bit of trial and error has got me to this point.

runtime.GOMAXPROCS(4)

file, err := os.Open("space.jpg")
if err != nil {
    log.Fatal(err)
}
defer file.Close()

img, err := jpeg.Decode(file)
if err != nil {
    log.Fatal(os.Stderr, "%s: %v\n", "space.jpg", err)
}
for i:= 0; i<10; i++{
TSeqStart := time.Now()
b := img.Bounds()
imgSet := image.NewRGBA(b)
for y := 0; y < b.Max.Y; y++ {
    for x := 0; x < b.Max.X; x++ {
      oldPixel := img.At(x, y)
  r, g, b, _ := oldPixel.RGBA()
  lum := 0.299*float64(r) + 0.587*float64(g) + 0.114*float64(b)
  pixel := color.Gray{uint8(lum / 256)}
  imgSet.Set(x, y, pixel)
     }
    }
  TSeq := time.Since(TSeqStart)
  //ns := TSeq.Nanoseconds()

  avgSeq = avgSeq +TSeq
  fmt.Printf("\nTime in ns (Sequential): " , TSeq)
  outFile, err := os.Create("changed.jpg")
  if err != nil {
    log.Fatal(err)
  }
  defer outFile.Close()
  jpeg.Encode(outFile, imgSet, nil)

}
avgSeq = avgSeq/10

fmt.Print("\n\nAverage sequential time for 10 runs: ", avgSeq)
  //parallel version
    file2, err := os.Open("space.jpg")
    if err != nil {
        log.Fatal(err)
    }
    defer file.Close()

    img2, err := jpeg.Decode(file2)
    if err != nil {
        log.Fatal(os.Stderr, "%s: %v\n", "space.jpg", err)
    }

    for j:=1;j<=4;j++{
      runtime.GOMAXPROCS(j)


    for i:= 0; i<10; i++{

    TParStart:= time.Now()
    imgSet2 := imgprocess(img2, runtime.NumCPU(), splitVert(1024), rgbtogrey)
    TPar := time.Since(TParStart)
    //ns2 :=  TPar.Nanoseconds()

    avgPar = avgPar +TPar
    fmt.Print("\nTime in Nanoseconds (Parallel) with GOMAXPROCS set at ",j ,": " , TPar)

    outFile2, err := os.Create("changed2.jpg")
    if err != nil {
      log.Fatal(err)
    }
    defer outFile2.Close()
    jpeg.Encode(outFile2, imgSet2, nil)

      if err != nil {
          log.Fatalf("encoding image: %v", err)
      }
    }
    avgPar = avgPar/10
    fmt.Print("\n\nAverage time for 10 runs in parallel (GOMAXPROCS:",j,"): ", avgPar)
    var j64 time.Duration
    j64 = time.Duration(j)
    totalPar := j64*avgPar
    fmt.Print("\n\nTotal Parallel time: ", totalPar)

      speedup := avgSeq.Seconds()/avgPar.Seconds()

      fmt.Printf("\n\nSpeed up: %f", speedup)

      var jfloat float64
      jfloat = float64(j)
      theoreticalMin := avgSeq.Seconds()/jfloat
      fmt.Print("\n\nTheoretical Minimum: ", theoreticalMin,"ms")

     var tPFloat float64
     tPFloat = float64(totalPar)
      efficiency := avgSeq.Seconds()/tPFloat
      fmt.Print("\n\n Efficiency: ", efficiency,"%")

       overhead := totalPar - avgSeq
       fmt.Print("\n\nOverhead time: ", overhead ,"\n")

Upvotes: 1

Views: 347

Answers (1)

peterSO
peterSO

Reputation: 166539

First, I would try to explain what was going on here (NumCPU=4):

package main

import (
    "image"
    "image/color"
    "image/jpeg"
    "os"
    "testing"
)

func changeImage(img image.Image) {
    b := img.Bounds()
    imgSet := image.NewRGBA(b)
    for y := 0; y < b.Max.Y; y++ {
        for x := 0; x < b.Max.X; x++ {
            oldPixel := img.At(x, y)
            r, g, b, _ := oldPixel.RGBA()
            lum := 0.299*float64(r) + 0.587*float64(g) + 0.114*float64(b)
            pixel := color.Gray{uint8(lum / 256)}
            imgSet.Set(x, y, pixel)
        }
    }
}

func BenchmarkParallel(b *testing.B) {
    file, err := os.Open("space.jpg")
    if err != nil {
        b.Fatal(err)
    }
    defer file.Close()
    img, err := jpeg.Decode(file)
    if err != nil {
        b.Fatal(err)
    }

    b.ReportAllocs()
    b.RunParallel(func(pb *testing.PB) {
        for pb.Next() {
            changeImage(img)
        }
    })
}

func BenchmarkSingle(b *testing.B) {
    file, err := os.Open("space.jpg")
    if err != nil {
        b.Fatal(err)
    }
    defer file.Close()
    img, err := jpeg.Decode(file)
    if err != nil {
        b.Fatal(err)
    }

    b.ReportAllocs()
    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        changeImage(img)
    }
}

Output:

$ go test -bench=. -cpu=1,2,4,6
goos: linux
goarch: amd64
pkg: so/space
BenchmarkParallel        50   22901501 ns/op     2296662 B/op     571021 allocs/op
BenchmarkParallel-2     100   11599582 ns/op     2290637 B/op     571021 allocs/op
BenchmarkParallel-4     200   10631362 ns/op     2287631 B/op     571021 allocs/op
BenchmarkParallel-6     200   10916331 ns/op     2287629 B/op     571021 allocs/op
BenchmarkSingle          50   23645522 ns/op     2284582 B/op     571021 allocs/op
BenchmarkSingle-2        50   23158899 ns/op     2284584 B/op     571021 allocs/op
BenchmarkSingle-4        50   31069104 ns/op     2284589 B/op     571021 allocs/op
BenchmarkSingle-6        50   28026326 ns/op     2284586 B/op     571021 allocs/op
PASS
ok      so/space    14.047s

ADDENDUM:

Next, read the relevant documentation.

The Go image package

Package image

Package color

Fix the bugs and make improvements for an optimized version. Compare the optimized version to the baseline that we established earlier.

package main

import (
    "image"
    "image/color"
    "image/jpeg"
    "os"
    "testing"
)

func changeImageOpt(img image.Image) *image.RGBA {
    b := img.Bounds()
    imgSet := image.NewRGBA(b)
    for y := b.Min.Y; y < b.Max.Y; y++ {
        for x := b.Min.X; x < b.Max.X; x++ {
            r, g, b, _ := img.At(x, y).RGBA()
            lum := 0.299*float64(r) + 0.587*float64(g) + 0.114*float64(b)
            r, g, b, a := color.Gray{uint8(lum / 256)}.RGBA()
            rgba := color.RGBA{R: uint8(r), G: uint8(g), B: uint8(b), A: uint8(a)}
            imgSet.SetRGBA(x, y, rgba)
        }
    }
    return imgSet
}

func BenchmarkSingleOpt(b *testing.B) {
    file, err := os.Open("space.jpg")
    if err != nil {
        b.Fatal(err)
    }
    defer file.Close()
    img, err := jpeg.Decode(file)
    if err != nil {
        b.Fatal(err)
    }

    b.ReportAllocs()
    b.ResetTimer()
    for i := 0; i < b.N; i++ {
        changeImageOpt(img)
    }
}

Output:

$ go test -bench=Single -cpu=2
goos: linux
goarch: amd64
pkg: so/space
BenchmarkSingle-2        20   84970866 ns/op     2284584 B/op     571021 allocs/op
BenchmarkSingleOpt-2     30   48353165 ns/op     1371010 B/op     190342 allocs/op
PASS
ok      so/space    4.648s

Following the instructions in the documentation, we have a significant reduction in CPU time and memory allocations.

There are corresponding improvements for parallel benchmarks (NumCPU=4).

$ go test -bench=Parallel -cpu=1,2,3,4,6
goos: linux
goarch: amd64
pkg: so/space
BenchmarkParallel        20   87135554 ns/op     2314774 B/op     571021 allocs/op
BenchmarkParallel-2      30   46567417 ns/op     2304732 B/op     571021 allocs/op
BenchmarkParallel-3      30   43262344 ns/op     2304736 B/op     571021 allocs/op
BenchmarkParallel-4      30   42593397 ns/op     2304763 B/op     571021 allocs/op
BenchmarkParallel-6      30   40803415 ns/op     2304804 B/op     571021 allocs/op
BenchmarkParallelOpt     30   47932887 ns/op     1391139 B/op     190342 allocs/op
BenchmarkParallelOpt-2   50   25216902 ns/op     1383094 B/op     190342 allocs/op
BenchmarkParallelOpt-3   50   23723356 ns/op     1383099 B/op     190342 allocs/op
BenchmarkParallelOpt-4   50   22400713 ns/op     1383101 B/op     190342 allocs/op
BenchmarkParallelOpt-6   50   22250405 ns/op     1383100 B/op     190342 allocs/op
PASS
ok      so/space    19.662s

Upvotes: 2

Related Questions