Reputation: 1700
Using Spark 1.6, I have a Spark DataFrame column
(named let's say col1
) with values A, B, C, DS, DNS, E, F, G and H. I want to create a new column (say col2
) with the values from the dict
here below. How do I map this? (e,g. 'A' needs to be mapped to 'S' etc.)
dict = {'A': 'S', 'B': 'S', 'C': 'S', 'DS': 'S', 'DNS': 'S', 'E': 'NS', 'F': 'NS', 'G': 'NS', 'H': 'NS'}
Upvotes: 70
Views: 128968
Reputation: 1376
In case anyone needs to map null values as well, the accepted answer didn't work for me. The problem with map type is it can't handle null-valued keys.
But we can replace it with a generated CASE WHEN statement and use isNull
instead of == None
:
from pyspark.sql import functions as F
from functools import reduce
d = spark.sparkContext.parallelize([('A', ), ('B', ), (None, ), ('INVALID', )]).toDF(['key'])
mapping = {'A': '1', 'B': '2', None: 'empty'}
map_tuples = list(mapping.items())
def email_eq_null_safe(key):
if key is None:
return F.col('key').isNull()
else:
return F.col('key') == key
'''
F.when(
F.col('key') == key1,
value1
).when(
F.col('key') == key2,
value2
)....
'''
whens = reduce(
lambda prev, nxt: prev.when(email_eq_null_safe(nxt[0]), nxt[1]),
map_tuples[1:],
F.when(email_eq_null_safe(map_tuples[0][0]), map_tuples[0][1])
)
d.select(
'key',
whens.alias('value')
).show()
+-------+-----+
| key|value|
+-------+-----+
| A| 1|
| B| 2|
| null|empty|
|INVALID| null|
+-------+-----+
Upvotes: 0
Reputation: 24356
Without itertools
import, list comprehensions deal with it very nicely.
Map from dict:
F.create_map([F.lit(x) for i in dic.items() for x in i])
Extracting values:
F.create_map([F.lit(x) for i in dic.items() for x in i])[F.col('col1')]
Full test:
from pyspark.sql import functions as F
df = spark.createDataFrame(
[('A',), ('E',), ('INVALID',)],
['col1']
)
dic = {'A': 'S', 'B': 'S', 'E': 'NS'}
map_col = F.create_map([F.lit(x) for i in dic.items() for x in i])
df = df.withColumn('col2', map_col[F.col('col1')])
df.show()
# +-------+----+
# | col1|col2|
# +-------+----+
# | A| S|
# | E| NS|
# |INVALID|null|
# +-------+----+
Upvotes: 6
Reputation: 330073
Inefficient solution with UDF (version independent):
from pyspark.sql.types import StringType
from pyspark.sql.functions import udf
def translate(mapping):
def translate_(col):
return mapping.get(col)
return udf(translate_, StringType())
df = sc.parallelize([('DS', ), ('G', ), ('INVALID', )]).toDF(['key'])
mapping = {
'A': 'S', 'B': 'S', 'C': 'S', 'DS': 'S', 'DNS': 'S',
'E': 'NS', 'F': 'NS', 'G': 'NS', 'H': 'NS'}
df.withColumn("value", translate(mapping)("key"))
with the result:
+-------+-----+
| key|value|
+-------+-----+
| DS| S|
| G| NS|
|INVALID| null|
+-------+-----+
Much more efficient (Spark >= 2.0, Spark < 3.0) is to create a MapType
literal:
from pyspark.sql.functions import col, create_map, lit
from itertools import chain
mapping_expr = create_map([lit(x) for x in chain(*mapping.items())])
df.withColumn("value", mapping_expr.getItem(col("key")))
with the same result:
+-------+-----+
| key|value|
+-------+-----+
| DS| S|
| G| NS|
|INVALID| null|
+-------+-----+
but more efficient execution plan:
== Physical Plan ==
*Project [key#15, keys: [B,DNS,DS,F,E,H,C,G,A], values: [S,S,S,NS,NS,NS,S,NS,S][key#15] AS value#53]
+- Scan ExistingRDD[key#15]
compared to UDF version:
== Physical Plan ==
*Project [key#15, pythonUDF0#61 AS value#57]
+- BatchEvalPython [translate_(key#15)], [key#15, pythonUDF0#61]
+- Scan ExistingRDD[key#15]
In Spark >= 3.0 getItem
should be replaced with __getitem__
([]
), i.e:
from pyspark.sql.functions import col, create_map, lit
from itertools import chain
mapping_expr = create_map([lit(x) for x in chain(*mapping.items())])
df.withColumn("value", mapping_expr[col("key")])
Upvotes: 134
Reputation: 831
you can use the function which convert dictionary into case syntax in Spark SQL
func_mapper = lambda dic,col,default : f"(CASE {col} WHEN " + " WHEN ".join([ f"'{k}' THEN '{v}'" for (k,v) in dic.items() ]) + f" ELSE '{default}' END)"
Upvotes: 0
Reputation: 993
If you want to create a map col from a nested dictionary you can use this:
def create_map(d,):
if type(d) != dict:
return F.lit(d)
level_map = []
for k in d:
level_map.append(F.lit(k))
level_map.append(create_map(d[k]))
return F.create_map(level_map)
d = {'a': 1, 'b': {'c': 2, 'd': 'blah'}}
print(create_map(d)) # <- Column<b'map(a, 1, b, map(c, 2, d, blah))'>
Upvotes: 1
Reputation: 831
Sounds like the simplest solution would be to use the replace function: http://spark.apache.org/docs/2.4.0/api/python/pyspark.sql.html#pyspark.sql.DataFrame.replace
mapping= {
'A': '1',
'B': '2'
}
df2 = df.replace(to_replace=mapping, subset=['yourColName'])
Upvotes: 49