Reputation: 319
How can I drop the exact duplicates of a row. So if I have a data frame that looks like so:
A B C
1 2 3
3 2 2
1 2 3
now my data frame is a lot larger than this but is their a way that we can have python look at every row and if the values in the rows are the exact same as another row just drop or delete that row. I want to take in to account for the whole data frame i don't want to specify the column I want to get unique values for.
Upvotes: 0
Views: 646
Reputation: 210982
you can use DataFrame.drop_duplicates() method:
In [23]: df
Out[23]:
A B C
0 1 2 3
1 3 2 2
2 1 2 3
In [24]: df.drop_duplicates()
Out[24]:
A B C
0 1 2 3
1 3 2 2
Upvotes: 3
Reputation: 169524
You can get a de-duplicated dataframe with the inverse of .duplicated
:
df[~df.duplicated(['A','B','C'])]
Returns:
>>> df[~df.duplicated(['A','B','C'])]
A B C
0 1 2 3
1 3 2 2
Upvotes: 2