Reputation: 7004
I have the following pandas DataFrame
column dfA['TradeDate']
:
0 20100329.0
1 20100328.0
2 20100329.0
...
and I wish to transform it to a datetime.
Based on another tread on SO, I convert it first to a string and then apply the strptime
function.
dfA['TradeDate'] = datetime.datetime.strptime( dfA['TradeDate'].astype('int').to_string() ,'%Y%m%d')
However this returns the error that my format is incorrect (ValueError
).
An issue that I spotted is that the column is not properly to string, but to an object.
When I try:
dfA['TradeDate'] = datetime.datetime.strptime( dfA['TradeDate'].astype(int).astype(str),'%Y%m%d')
It returns: must be a Str and not Series.
Upvotes: 8
Views: 31122
Reputation: 1174
In your first attempt you tried to convert it to string and then pass to strptime
, which resulted in ValueError
. This happens because dfA['TradeDate'].astype('int').to_string()
creates a single string containing all dates as well as their row numbers. You can change this to
dates = dfA['TradeDate'].astype('int').to_string(index=False).split()
dates
[u'20100329.0', u'20100328.0', u'20100329.0']
to get a list of dates. Then use python list comprehension to convert each element to datetime:
dfA['TradeDate'] = [datetime.strptime(x, '%Y%m%d.0') for x in dates]
Upvotes: 0
Reputation: 11
strptime
function works on a single value, not on series. You need to apply that function to each element of the column
try pandas.to_datetime
method
eg
dfA = pandas.DataFrame({"TradeDate" : [20100329.0,20100328.0]})
pandas.to_datetime(dfA['TradeDate'], format = "%Y%m%d")
or
dfA['TradeDate'].astype(int).astype(str)\
.apply(lambda x:datetime.datetime.strptime(x,'%Y%m%d'))
Upvotes: 0
Reputation: 6784
You can use to_datetime
with a custom format on a string representation of the values:
import pandas as pd
pd.to_datetime(pd.Series([20100329.0, 20100328.0, 20100329.0]).astype(str), format='%Y%m%d.0')
Upvotes: 1
Reputation: 862441
You can use:
df['TradeDate'] = pd.to_datetime(df['TradeDate'], format='%Y%m%d.0')
print (df)
TradeDate
0 2010-03-29
1 2010-03-28
2 2010-03-29
But if some bad values, add errors='coerce'
for replace them to NaT
print (df)
TradeDate
0 20100329.0
1 20100328.0
2 20100329.0
3 20153030.0
4 yyy
df['TradeDate'] = pd.to_datetime(df['TradeDate'], format='%Y%m%d.0', errors='coerce')
print (df)
TradeDate
0 2010-03-29
1 2010-03-28
2 2010-03-29
3 NaT
4 NaT
Upvotes: 13