Reputation: 2225
I have an issue during predict
inside of Pipelines flow with custom classes per each pipe step.
class MyFeatureSelector():
def __init__(self, features=5, method='pca'):
self.features = features
self.method = method
def fit(self, X, Y):
return self
def transform(self, X, Y=None):
try:
if self.features < X.shape[1]:
if self.method == 'pca':
selector = PCA(n_components=self.features)
elif self.method == 'rfe':
selector = RFE(estimator=LinearRegression(n_jobs=-1),
n_features_to_select=self.features,
step=1)
selector.fit(X, Y)
return selector.transform(X)
except Exception as err:
print('MyFeatureSelector.transform(): {}'.format(err))
return X
def fit_transform(self, X, Y=None):
self.fit(X, Y)
return self.transform(X, Y)
model = Pipeline([
("DATA_CLEANER", MyDataCleaner(demo='', mode='strict')),
("DATA_ENCODING", MyEncoder(encoder_name='code')),
("FEATURE_SELECTION", MyFeatureSelector(features=15, method='rfe')),
("HUBER_MODELLING", HuberRegressor())
])
So, code above works very good here:
model.fit(X, _Y)
But I have an error here
prediction = model.predict(XT)
ERROR: shapes (672,107) and (15,) not aligned: 107 (dim 1) != 15 (dim 0)
Debug shows that issue here: selector.fit(X, Y)
because new instance of MyFeatureSelector
was created during predict()
step and Y
is not exists at that moment.
Where was I wrong?
Upvotes: 1
Views: 3798
Reputation: 2225
Working version posted below:
class MyFeatureSelector():
def __init__(self, features=5, method='pca'):
self.features = features
self.method = method
self.selector = None
self.init_selector()
def init_selector():
if self.method == 'pca':
self.selector = PCA(n_components=self.features)
elif self.method == 'rfe':
self.selector = RFE(estimator=LinearRegression(n_jobs=-1),
n_features_to_select=self.features,
step=1)
def fit(self, X, Y):
return self
def transform(self, X, Y=None):
try:
if self.features < X.shape[1]:
if Y is not None:
self.selector.fit(X, Y)
return selector.transform(X)
except Exception as err:
print('MyFeatureSelector.transform(): {}'.format(err))
return X
def fit_transform(self, X, Y=None):
self.fit(X, Y)
return self.transform(X, Y)
Upvotes: 3