Reputation: 1186
I am working on a classification problem. I have created a class for my classifier. I am having an issue with this class. I have a get_clf_pipeline method which returns the classifier pipeline, which is used by the train method. This method doesn`t require access to an instance or class data and I tried making it a staticmethod but that approach didn`t work as well. How can I fix this issue?
class Event_classifier:
def __init__(self):
self.clf_pipeline = self.get_clf_pipeline()
def get_clf_pipeline(self):
""" Return the pipeline
"""
categorical_features = ['CRole', 'Clevel', 'Gender']
categorical_transformer = Pipeline(steps=[
('imputer', SimpleImputer(strategy='constant', fill_value='missing')),
('onehot', OneHotEncoder(handle_unknown='ignore'))])
preprocessor = ColumnTransformer(
transformers=[
('cat', categorical_transformer, categorical_features)])
estimators = [
('rf',RandomForestClassifier(n_estimators=200,class_weight='balanced')),
('mnb', MultinomialNB()),
('svr', make_pipeline(StandardScaler(with_mean=False),
LinearSVC(random_state=42)))
]
stacked_clf = StackingClassifier(
estimators=estimators, final_estimator=LogisticRegression(class_weight='balanced')
)
clf_pipeline = Pipeline(steps=[('preprocessor', preprocessor),
('classifier', stacked_clf)])
return clf_pipeline
def train(self, X,y):
"""Trains the classifier on input data
"""
print(type(self.clf_pipeline))
self.clf_pipeline(X,y)
def predict(self):
"""Predict on test data
"""
if (X.shape) == 1:
X = X.T
y_pred = self.clf_pipeline.predict(X)
return y_pred
Creating a class instance and training on data
ec = Event_classifier()
ec.train(X_train, y_train)
print('Model training complete')
I get the following error
<class 'sklearn.pipeline.Pipeline'>
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-129-36d8dfcdfc12> in <module>
1 ec = Event_classifier()
2
----> 3 ec.train(X_train, y_train)
4 print('Model training complete')
5
<ipython-input-126-de5f651c0a3d> in train(self, X, y)
35 """
36 print(type(self.clf_pipeline))
---> 37 self.clf_pipeline(X,y)
38
39 def predict(self):
TypeError: 'Pipeline' object is not callable
Upvotes: 0
Views: 6368
Reputation: 12582
Your self.clf_pipeline
is a Pipeline
object, so self.clf_pipeline(X,y)
is trying to call the pipeline on the inputs X, y
, but (as the error says) Pipeline
s aren't functions. Presumably you want something like self.clf_pipeline.fit(X, y)
instead.
One more thing jumps out: when is X.shape == 1
(in your predict
method)?
Upvotes: 1