Reputation: 213
I have a network that looks like this
library(igraph)
library(igraphdata)
data("kite")
plot(kite)
I run a community detection and the result looks like this
community <- cluster_fast_greedy(kite)
plot(community,kite)
Now I want to extract a network based on the communities. The edge weight should be the number of ties between communities (how strong are communities connected to each other), the vertex attribute should be the number of nodes in the community (called numnodes).
d <- data.frame(E=c(1, 2, 3),
A=c(2, 3, 1))
g2 <- graph_from_data_frame(d, directed = F)
E(g2)$weight <- c(5, 1, 1)
V(g2)$numnodes <- c(4,3,3)
plot.igraph(g2,vertex.label=V(g2)$name, edge.color="black",edge.width=E(g2)$weight,vertex.size=V(g2)$numnodes)
The graph should look like this
One node is larger than the others, one edge has a lot of weight in comparison to the others.
Upvotes: 2
Views: 699
Reputation: 4576
As far as I know, igraph
doesn't have method to count edges connecting groups of vertices. Therefore to count the edges connecting communities you need to iterate over each pairs of communities. To count the members for each community, you can use the sizes
method.
library(igraph)
library(igraphdata)
data("kite")
plot(kite)
community <- cluster_fast_greedy(kite)
plot(community,kite)
cedges <- NULL
for(i in seq(1,max(community$membership) - 1)){
for(j in seq(i + 1, max(community$membership))){
imembers <- which(community$membership == i)
jmembers <- which(community$membership == j)
weight <- sum(
mapply(function(v1) mapply(
function(v2) are.connected(kite, v1, v2),
jmembers),
imembers)
)
cedges <- rbind(cedges, c(i, j, weight))
}
}
cedges <- as.data.frame(cedges)
names(cedges)[3] <- 'weight'
cgraph <- graph_from_data_frame(cedges, directed = FALSE)
V(cgraph)$numnodes <- sizes(community)
plot.igraph(cgraph,
vertex.label = V(cgraph)$name,
edge.color = "black",
edge.width = E(cgraph)$weight,
vertex.size = V(cgraph)$numnodes)
Upvotes: 1