Reputation: 96
I have a dataframe of pandas in python. I want to remove the line in three conditions.First, column 1 to 6 and 10 to 15 are 'NA' in the line. Second, column 1 to 3 and 7 to 12 and 16 to 18 are 'NA'. Third, colum 4 to 9 and 13 to 18 are 'NA'. I wrote the code to fix it, but it didn't work. The code is as follows:
data = pd.read_csv('data(2).txt',sep = "\t",index_col = 'tracking_id')
num = len(data) + 1
for i in range(num):
if (data.iloc[i,[0:5,9:14]] == 'NA') | (data.iloc[i,[0:11,15:17]] == 'NA)'\
| (data.iloc[i,[3:8,12:17]] == 'NA'):
data = data.drop(data.index[i], axis = 0)
Upvotes: 1
Views: 107
Reputation: 862911
You can use:
np.random.seed(100)
df = pd.DataFrame(np.random.randint(10, size=(5,18)))
df.iloc[0, np.r_[0:5,9:14]] = np.nan
df.iloc[2, np.r_[0:11,15:17]] = np.nan
df.iloc[3:5, np.r_[3:8,12:17]] = np.nan
print (df)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 \
0 NaN NaN NaN NaN NaN 0.0 4.0 2.0 5.0 NaN NaN NaN NaN NaN 8.0
1 6.0 2.0 4.0 1.0 5.0 3.0 4.0 4.0 3.0 7.0 1.0 1.0 7.0 7.0 0.0
2 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 2.0 5.0 1.0 8.0
3 2.0 8.0 3.0 NaN NaN NaN NaN NaN 3.0 4.0 7.0 6.0 NaN NaN NaN
4 7.0 6.0 6.0 NaN NaN NaN NaN NaN 6.0 6.0 0.0 7.0 NaN NaN NaN
15 16 17
0 4.0 0.0 9
1 2.0 9.0 9
2 NaN NaN 4
3 NaN NaN 5
4 NaN NaN 4
First check if values are NaN
by isnull
, then select by numpy.r_
and iloc
and compare with all
for check if all valueas are True
per row. Then build main mask with |
(or).
Last filter by boolean indexing
with inverted condition by ~
:
mask = df.isnull()
m1 = mask.iloc[:, np.r_[0:5,9:14]].all(1)
m2 = mask.iloc[:, np.r_[0:11,15:17]].all(1)
m3 = mask.iloc[:, np.r_[3:8,12:17]].all(1)
m = m1 | m2 | m3
print (m)
0 True
1 False
2 True
3 True
4 True
dtype: bool
df = df[~m]
print (df)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 \
1 6.0 2.0 4.0 1.0 5.0 3.0 4.0 4.0 3.0 7.0 1.0 1.0 7.0 7.0 0.0
15 16 17
1 2.0 9.0 9
Upvotes: 2
Reputation: 517
list_of_row_to_be_deleted=[1,2]
df.drop(df.index[[list_of_row_to_be_deleted]])
Upvotes: 0