Reputation: 10929
I am getting an error when calculating the cost function using softmax. It says that the shape of my logits and labels are not match
InvalidArgumentError (see above for traceback): logits and labels must be same size: logits_size=[1000,2] labels_size=[1,1000]
[[Node: SoftmaxCrossEntropyWithLogits = SoftmaxCrossEntropyWithLogits[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"](Reshape, Reshape_1)]]
Even if I do reshape or transpose the shape cannot match as logits is [1000,2] size and labels is [1000,1]. How do I tackle this issue?
n_nodes_hl1 = 250
n_nodes_hl2 = 250
n_classes = 2
batch_size = 1000
with open("xdf.pickle", 'rb') as f:
features = pickle.load(f)
with open("ydf.pickle", 'rb') as f:
labels = pickle.load(f)
def neural_network_model(data, feature_count):
hidden_layer_1 = {'weights': tf.Variable(tf.random_normal([feature_count, n_nodes_hl1])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl1]))}
hidden_layer_2 = {'weights': tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
'biases': tf.Variable(tf.random_normal([n_nodes_hl2]))}
output_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl2, n_classes])),
'biases': tf.Variable(tf.random_normal([n_classes])), }
l1 = tf.add(tf.matmul(data, hidden_layer_1['weights']), hidden_layer_1['biases'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1, hidden_layer_2['weights']), hidden_layer_2['biases'])
l2 = tf.nn.relu(l2)
output = tf.matmul(l2, output_layer['weights']) + output_layer['biases']
return output
def train_neural_network(x, y, features, labels):
X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size=0.2)
prediction = neural_network_model(x, len(features.columns))
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)
hm_epochs = 1
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
for epoch in range(hm_epochs):
epoch_loss = 0
for i in range(int(len(X_train) / batch_size)):
epoch_x = X_train[i*batch_size: min((i + 1)*batch_size, len(X_train))]
epoch_y = y_train[i*batch_size: min((i + 1)*batch_size, len(y_train))]
i, c = sess.run([optimizer, cost], feed_dict = {x:epoch_x, y:epoch_y})
epoch_loss += c
print('Epoch', epoch, ' completed out of ', hm_epochs, ' loss: ', epoch_loss)
correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
print('Accuracy: ', accuracy.eval({x: X_test, y: y_test}))
x = tf.placeholder('float', [None, len(features.columns)])
y = tf.placeholder('float')
train_neural_network(x, y, features, labels)
Upvotes: 0
Views: 538
Reputation: 2629
Since I do not know what data you have, I can only guess. Your network has n_classes
output neurons (2 in your case), but I assume that your labels are binary (0 or 1). You will either have to reduce the number of output neurons to 1 (this should work since you only have two classes), or convert your labels into one-hot labels ([1,0] for a label 0 and [0,1] for a label 1).
You could also try using tf.nn.sparse_softmax_cross_entropy_with_logits()
, maybe it will work, so that you don't have to change the rest of the network...
Upvotes: 1