BrambleXu
BrambleXu

Reputation: 331

Illegal argument error: logits and labels must be same size, batch size is different

I am using CNN to classifies MNIST dataset into 10 classes. But the error shows the batch size of the pred is different.

InvalidArgumentError (see above for traceback): logits and labels must be same size: logits_size=[36,10] labels_size=[64,10]
         [[Node: SoftmaxCrossEntropyWithLogits = SoftmaxCrossEntropyWithLogits[T=DT_FLOAT, _device="/job:localhost/replica:0/task:0/cpu:0"](Reshape_2, Reshape_3)]]

I can't find the reason why the batch size became 36 instead of 64. Here is my code. The image size is 28*28*1.

import tensorflow as tf

# input data
from tensorflow.examples.tutorials.mnist import input_data
# mnist = input_data.read_data_sets('/tmp/data/', one_hot=True)
mnist = input_data.read_data_sets('./MNIST_data', one_hot=True)  # runing on server

learning_rate = 0.001
training_iters = 200000
batch_size = 64
display_step = 10

n_input = 784
n_classes = 10
dropout = 0.75

x = tf.placeholder(tf.float32, [None, n_input])
y = tf.placeholder(tf.float32, [None, n_classes])
keep_prob = tf.placeholder(tf.float32) # dropout


def conv2d(name, x, W, b, s=1):
    return tf.nn.relu(tf.nn.conv2d(x, W, strides=[1, s, s, 1], padding='SAME'))

def maxpool2d(name, x, k=2, s=2):
    return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, s, s, 1],
                          padding='VALID', name=name)

def norm(name, l_input, lsize=4):
    return tf.nn.lrn(l_input, lsize, bias=1.0, alpha=0.001 / 9.0,
                     beta=0.75, name=name)


def alex_net(x, weights, biases, dropout):
    # Reshape input picture
    x = tf.reshape(x, shape=[-1, 28, 28, 1])

    conv1 = conv2d('conv1', x, weights['wc1'], biases['bc1'], s=1)  
    pool1 = maxpool2d('pool1', conv1, k=2, s=2) 
    norm1 = norm('norm1', pool1)

    conv2 = conv2d('conv2', norm1, weights['wc2'], biases['bc2'], s=1)
    pool2 = maxpool2d('pool2', conv2, k=2, s=2)
    norm2 = norm('norm2', pool2)

    conv3 = conv2d('conv3', norm2, weights['wc3'], biases['bc3'], s=1)
    pool3 = maxpool2d('pool3', conv3, k=2, s=2)
    norm3 = norm('norm3', pool3)

    fc1 = tf.reshape(norm3, [-1, weights['wd1'].get_shape().as_list()[0]])
    fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
    fc1 = tf.nn.relu(fc1)

    fc2 = tf.add(tf.matmul(fc1, weights['wd2']), biases['bd2'])
    fc2 = tf.nn.relu(fc2)

    out = tf.matmul(fc2, weights['out']) + biases['out']
    return out


weights = {
    'wc1': tf.Variable(tf.random_normal([3, 3, 1, 64])),
    'wc2': tf.Variable(tf.random_normal([3, 3, 64, 128])),
    'wc3': tf.Variable(tf.random_normal([3, 3, 128, 256])),

    'wd1': tf.Variable(tf.random_normal([4*4*256, 1024])),
    'wd2': tf.Variable(tf.random_normal([1024, 1024])),
    'out': tf.Variable(tf.random_normal([1024, n_classes]))
}
biases = {
    'bc1': tf.Variable(tf.random_normal([64])),
    'bc2': tf.Variable(tf.random_normal([128])),
    'bc3': tf.Variable(tf.random_normal([256])),

    'bd1': tf.Variable(tf.random_normal([1024])),
    'bd2': tf.Variable(tf.random_normal([1024])),
    'out': tf.Variable(tf.random_normal([n_classes]))
}


pred = alex_net(x, weights, biases, keep_prob)


cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))



init = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)
    step = 1
    while step * batch_size < training_iters:
        batch_x, batch_y = mnist.train.next_batch(batch_size)
        sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,
                                 keep_prob: dropout})
        if step % display_step == 0:
            loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x,
                                                    y: batch_y,
                                                    keep_prob: 1.})
            print("Iter " + str(step*batch_size) + ", Minibatch Loss= " + \
                "{:.6f}".format(loss) + ", Training Accuracy= " + \
                "{:.5f}".format(acc))
        step += 1
    print("Optimization Finished!")

    print("Testing Accuracy:", \
        sess.run(accuracy, feed_dict={x: mnist.test.images[:256],
                                   y: mnist.test.labels[:256],
                                   keep_prob: 1.}))

Upvotes: 0

Views: 837

Answers (1)

Joshua Lim
Joshua Lim

Reputation: 345

It should be because the padding used for maxpool2d is 'VALID' instead of 'SAME'. How it affected the batch layer was due to reshaping fc1 = tf.reshape(norm3, [-1, weights['wd1'].get_shape().as_list()[0]])

If the above answer didn't correct the error, you should check the output shape of each function by running function_name.eval(sess, feed_dict = {x: mnist.test.images[:256], y: mnist.test.labels[:256], keep_prob: 1.})).shape in your terminal and see what is the output shape, and whether it is the desired shape for that layer.

Upvotes: 1

Related Questions