Reputation: 603
How can I find cosine similarity between two columns in a pyspark dataframe?
Suppose I have a spark dataframe
|a |b |
+--+--|
|1 |4 |
|2 |5 |
|3 |6 |
+--+--+
Now I want to know what is the cosine similarity between values in column a and the ones in column b, i.e.,
cosine_similarity([1, 2, 3], [4, 5, 6])
Upvotes: 2
Views: 6645
Reputation: 5389
I assume that you want to find similarity between 2 columns. Says you have this dataframe:
df = spark.createDataFrame(pd.DataFrame([[1,2], [3,4]], columns=['a', 'b']))
Make simple function to take dataframe and two column names.
import pyspark.sql.functions as func
def cosine_similarity(df, col1, col2):
df_cosine = df.select(func.sum(df[col1] * df[col2]).alias('dot'),
func.sqrt(func.sum(df[col1]**2)).alias('norm1'),
func.sqrt(func.sum(df[col2] **2)).alias('norm2'))
d = df_cosine.rdd.collect()[0].asDict()
return d['dot']/(d['norm1'] * d['norm2'])
cosine_similarity(df, 'a', 'b') # output 0.989949
Upvotes: 8