Enric Rovira
Enric Rovira

Reputation: 27

Pyspark cosinesimilarity over Dataframe

I have a PySpark DataFrame, df1, that looks like:

Customer1  Customer2  v_cust1   v_cust2
   1           2         0.9      0.1
   1           3         0.3      0.4
   1           4         0.2      0.9
   2           1         0.8      0.8

I want to take the cosine similarity of the two dataframes. And have something like that

Customer1  Customer2  v_cust1   v_cust2  cosine_sim
   1           2         0.9      0.1       0.1
   1           3         0.3      0.4       0.9
   1           4         0.2      0.9       0.15
   2           1         0.8      0.8       1

I have a python function that receives number/array of numbers like this:

def cos_sim(a, b):
    return float(np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)))

How can i create the cosine_sim column in my dataframe using udf? Can i pass several columns instead of one column to the udf cosine_sim function?

Upvotes: 1

Views: 667

Answers (1)

pissall
pissall

Reputation: 7399

It would be more efficient if you'd rather use a pandas_udf.

It performs better at vectorized operations than spark udfs: Introducing Pandas UDF for PySpark

from pyspark.sql.functions import PandasUDFType, pandas_udf
import pyspark.sql.functions as F

# Names of columns 
a, b = "v_cust1", "v_cust2"
cosine_sim_col = "cosine_sim"

# Make a reserved column to fill the values since the constraint of pandas_udf
# is that the input schema and output schema has to remain the same.
df = df.withColumn("cosine_sim", F.lit(1.0).cast("double"))

@pandas_udf(df.schema, PandasUDFType.GROUPED_MAP)
def cos_sim(df):
    df[cosine_sim_col] = float(np.dot(df[a], df[b]) / (np.linalg.norm(df[a]) * np.linalg.norm(df[b])))
    return df


# Assuming that you want to groupby Customer1 and Customer2 for arrays
df2 = df.groupby(["Customer1", "Customer2"]).apply(cos_sim)

# But if you want to send entire columns then make a column with the same 
# value in all rows and group by it. For e.g.:
df3 = df.withColumn("group", F.lit("group_a")).groupby("group").apply(cos_sim)

Upvotes: 2

Related Questions