Reputation: 21
I am trying to create a subset of the rows that have a value of 1 for variable A, and a value of 1 for at least one of the following variables: B, C, or D.
Subset1 <- subset(Data,
Data$A==1 &
Data$B ==1 ||
Data$C ==1 |
Data$D == 1,
select= A)
Subset1
The problem is that the code above returns some rows that have A=0 and I am not sure why.
To troublehsoot:
I know that && and || are the long forms or and and or which vectorizes it. I have run this code several times using &&, ||,& and | in different places. Nothing returns what I am looking for exactly.
When I shorten the code, it works fine and I subset only the rows that I would expect:
Subset1 <- subset(Data,
Data$A==1 &
Data$B==0,
select= A)
Subset1
Unfortunately, this doesn't suffice since I also need to capture rows whose C or D value = 1. Can anyone explain why my first code block is not subsetting what I am expecting it to?
Upvotes: 0
Views: 144
Reputation: 2757
You can use parens to be more specific about what your &
is referring to. Otherwise (as @Patrick Trentin clarified) your logical operators are combined according to operator precedence (within the same level of precedence they are evaluated from left to right).
Example:
> FALSE & TRUE | TRUE #equivalent to (FALSE & TRUE) | TRUE
[1] TRUE
> FALSE & (TRUE | TRUE)
[1] FALSE
So in your case you can try something like below (assuming you want items that A == 1
&
that meet one of the other conditions):
Data$A==1 & (Data$B==1 | Data$C==1 | Data$D==1)
Upvotes: 3
Reputation: 893
Since you didn't provide the data you're working with, I've replicated some here.
set.seed(20)
Data = data.frame(A = sample(0:1, 10, replace=TRUE),
B = sample(0:1, 10, replace=TRUE),
C = sample(0:1, 10, replace=TRUE),
D = sample(0:1, 10, replace=TRUE))
If you use parenthesis, which can evaluate to a logical function, you can achieve what you're looking for.
Subset1 <- subset(Data,
Data$A==1 &
(Data$B == 1 |
Data$C == 1 |
Data$D ==1),
select=A)
Subset1
A
1 1
2 1
4 1
5 1
Upvotes: 1