Reputation: 61
I want to calculate binary field churn_flag if user churn the game or he/she is still playing.
I have calculated data max date
max_time = data['time'].max()
Result:
Timestamp('2017-07-12 01:18:50') (future date)
I have calculated each user max date:
data_max_time = pd.DataFrame(data.groupby(['id'])['time'].max()).reset_index()
data_max_time.columns = ['id','user_max_time']
Result:
2017-07-11 10:33:11 dtype:datetime64[ns]
I should check if the difference between these two dates longer or shorter than 2 days. I tried to solve it with:
(np.datetime64(final_data['max_time'],'D')-np.datetime64(final_data['user_max_time'],'D'))< (np.timedelta64(2,'D'))
Result:
ValueError: Could not convert object to NumPy datetime
How could I calculate True/False (1/0) field for each user?
Upvotes: 0
Views: 1199
Reputation: 863701
I believe is not necessary converting, use pandas only:
rng = pd.date_range('2017-04-03 15:00:07', periods=10, freq='28.5H')
data = pd.DataFrame({'time': rng, 'id': [1,1,2,2,2,5,5,5,1,2]})
print (data)
id time
0 1 2017-04-03 15:00:07
1 1 2017-04-04 19:30:07
2 2 2017-04-06 00:00:07
3 2 2017-04-07 04:30:07
4 2 2017-04-08 09:00:07
5 5 2017-04-09 13:30:07
6 5 2017-04-10 18:00:07
7 5 2017-04-11 22:30:07
8 1 2017-04-13 03:00:07
9 2 2017-04-14 07:30:07
max_time = data['time'].max()
data_max_time = data.groupby('id')['time'].max()
#data_max_time.columns = ['id','user_max_time']
print (data_max_time)
id
1 2017-04-13 03:00:07
2 2017-04-14 07:30:07
5 2017-04-11 22:30:07
Name: time, dtype: datetime64[ns]
print (max_time - data_max_time)
id
1 1 days 04:30:00
2 0 days 00:00:00
5 2 days 09:00:00
Name: time, dtype: timedelta64[ns]
df = (max_time - data_max_time < pd.Timedelta(2, unit='D')).reset_index(name='a')
print (df)
id a
0 1 True
1 2 True
2 5 False
Upvotes: 2