Reputation: 534
I've got a dataframe that looks like this
date id
0 2019-01-15 c-15-Jan-2019-0
1 2019-01-26 c-26-Jan-2019-1
2 2019-02-02 c-02-Feb-2019-2
3 2019-02-15 c-15-Feb-2019-3
4 2019-02-23 c-23-Feb-2019-4
and I'd like to create a new column called 'days_since' that shows the number of days that have gone by since the last record. For instance, the new column would be
date id days_since
0 2019-01-15 c-15-Jan-2019-0 NaN
1 2019-01-26 c-26-Jan-2019-1 11
2 2019-02-02 c-02-Feb-2019-2 5
3 2019-02-15 c-15-Feb-2019-3 13
4 2019-02-23 c-23-Feb-2019-4 7
I tried to use
df_c['days_since'] = df_c.groupby('id')['date'].diff().apply(lambda x: x.days)
but that just returned a column full of null values. The date column is full of datetime objects. Any ideas?
Upvotes: 1
Views: 1136
Reputation: 477759
I think you make it too complicated, given the date
column contains datetime data, you can use:
>>> df['date'].diff()
0 NaT
1 11 days
2 7 days
3 13 days
4 8 days
Name: date, dtype: timedelta64[ns]
or if you want the number of days:
>>> df['date'].diff().dt.days
0 NaN
1 11.0
2 7.0
3 13.0
4 8.0
Name: date, dtype: float64
So you can assign the number of days with:
df['days_since'] = df['date'].diff().dt.days
This gives us:
>>> df
date days_since
0 2019-01-15 NaN
1 2019-01-26 11.0
2 2019-02-02 7.0
3 2019-02-15 13.0
4 2019-02-23 8.0
Upvotes: 5