Reputation: 81
I am playing a code challenge. Simply speaking, the problem is:
Given a list L (max length is of the order of 1000) containing positive integers. Find the number of "Lucky Triples", which is
L[i]
dividesL[j]
, andL[j]
dividesL[k]
.
for example, [1,2,3,4,5,6]
should give the answer 3
because [1,2,4]
, [1,2,6]
,[1,3,6]
My attempt:
i
, j
, k
(i
from 1
to n-2
), (j
from i+1
to n-1
), (k
from j+1
to n)L[j] % L[i] == 0
, the k for loop
will be executedThe algorithm seems to give the correct answer. But the challenge said that my code exceeded the time limit. I tried on my computer for the list [1,2,3,...,2000]
, count = 40888(I guess it is correct). The time is around 5 second.
Is there any faster way to do that?
This is the code I have written in python.
def answer(l):
l.sort()
cnt = 0
if len(l) == 2:
return cnt
for i in range(len(l)-2):
for j in range(1,len(l)-1-i):
if (l[i+j]%l[i] == 0):
for k in range(1,len(l)-j-i):
if (l[i+j+k]%l[i+j] == 0):
cnt += 1
return cnt
Upvotes: 5
Views: 861
Reputation: 81
Thank you guys for all your suggestions. They are brilliant. But it seems that I still can't pass the speed test or I cannot handle with duplicated elements.
After discussing with my friend, I have just come up with another solution. It should be O(n^2) and I passed the speed test. Thanks all!!
def answer(lst):
lst.sort()
count = 0
if len(lst) == 2:
return count
#for each middle element, count the divisors at the front and the multiples at the back. Then multiply them.
for i, middle in enumerate(lst[1:len(lst)-1], start = 1):
countfirst = 0
countthird = 0
for first in (lst[0:i]):
if middle % first == 0:
countfirst += 1
for third in (lst[i+1:]):
if third % middle == 0:
countthird += 1
count += countfirst*countthird
return count
Upvotes: 3
Reputation: 54163
Your original code, for reference.
def answer(l):
l.sort()
cnt = 0
if len(l) == 2:
return cnt
for i in range(len(l)-2):
for j in range(1,len(l)-1-i):
if (l[i+j]%l[i] == 0):
for k in range(1,len(l)-j-i):
if (l[i+j+k]%l[i+j] == 0):
cnt += 1
return cnt
There are a number of misimplementations here, and with just a few tweaks we can probably get this running much faster. Let's start:
def answer(lst): # I prefer not to use `l` because it looks like `1`
lst.sort()
count = 0 # use whole words here. No reason not to.
if len(lst) == 2:
return count
for i, first in enumerate(lst):
# using `enumerate` here means you can avoid ugly ranges and
# saves you from a look up on the list afterwards. Not really a
# performance hit, but definitely looks and feels nicer.
for j, second in enumerate(lst[i+1:], start=i+1):
# this is the big savings. You know since you sorted the list that
# lst[1] can't divide lst[n] if n>1, but your code still starts
# searching from lst[1] every time! Enumerating over `l[i+1:]`
# cuts out a lot of unnecessary burden.
if second % first == 0:
# see how using enumerate makes that look nicer?
for third in lst[j+1:]:
if third % second == 0:
count += 1
return count
I bet that on its own will pass your speed test, but if not, you can check for membership instead. In fact, using a set here is probably a great idea!
def answer2(lst):
s = set(lst)
limit = max(s) # we'll never have a valid product higher than this
multiples = {} # accumulator for our mapping
for n in sorted(s):
max_prod = limit // n # n * (max_prod+1) > limit
multiples[n] = [n*k for k in range(2, max_prod+1) if n*k in s]
# in [1,2,3,4,5,6]:
# multiples = {1: [2, 3, 4, 5, 6],
# 2: [4, 6],
# 3: [6],
# 4: [],
# 5: [],
# 6: []}
# multiples is now a mapping you can use a Depth- or Breadth-first-search on
triples = sum(1 for j in multiples
for k in multiples.get(j, [])
for l in multiples.get(k, []))
# This basically just looks up each starting value as j, then grabs
# each valid multiple and assigns it to k, then grabs each valid
# multiple of k and assigns it to l. For every possible combination there,
# it adds 1 more to the result of `triples`
return triples
Upvotes: 2
Reputation: 3553
I guess sorting the list is pretty inefficient. I would rather try to iteratively reduce the number of candidates. You could do that in two steps.
At first filter all numbers that do not have a divisor.
from itertools import combinations
candidates = [max(pair) for pair in combinations(l, 2) if max(pair)%min(pair) == 0]
After that, count the number of remaining candidates, that do have a divisor.
result = sum(max(pair)%min(pair) == 0 for pair in combinations(candidates, 2))
Upvotes: 2
Reputation: 8636
You can use additional space to help yourself. After you sort the input list you should make a map/dict
where the key is each element in the list and value is a list of elements which are divisible by that in the list so you would have something like this
assume sorted list is list = [1,2,3,4,5,6]
your map would be
1 -> [2,3,4,5,6]
2-> [4,6]
3->[6]
4->[]
5->[]
6->[]
now for every key in the map you find what it can divide and then you find what that divides, for example you know that
1 divides 2 and 2 divides 4 and 6, similarly 1 divides 3 and 3 divides 6
the complexity of sorting should be O(nlogn)
and that of constructing the list should be better than O(n^2)
(but I am not sure about this part) and then I am not sure about the complexity of when you are actually checking for multiples but I think this should be much much faster than a brute force O(n^3)
If someone could help me figure out the time complexity of this I would really appreciate it
EDIT :
You can make the map
creation part faster by incrementing by X
(and not 1) where X
is the number in the list you are currently on since it is sorted.
Upvotes: 4
Reputation: 941
I'll give you just an idea, the implementation should be up to you:
Upvotes: 0