Reputation: 9820
Consider two n-dimensional, possibly overlapping, numpy meshgrids
, say
m1 = (x1, y1, z1, ...)
m2 = (x2, y2, z2, ...)
Within m1
and m2
there are no duplicate coordinate tuples. Each meshgrid
has a result array, which may result from different functions:
r1 = f1(m1)
r2 = f2(m2)
such that f1(m) != f2(m)
. Now I would like to join those two meshgrids
and their result arrays, e.g. m=m1&m2
and r=r1&r2
(where &
would denote some kind of union), such that the coordinate tuples in m
are still sorted and the values in r
still correspond to the original coordinate tuples. Newly created coordinate tuples should be identifiable (for instance with a special value).
To elaborate on what I'm after, I have two examples that kind of do what I want with simple for
and if
statements. Here's a 1D example:
x1 = [1, 5, 7]
r1 = [i**2 for i in x1]
x2 = [2, 4, 6]
r2 = [i*3 for i in x2]
x,r = list(zip(*sorted([(i,j) for i,j in zip(x1+x2,r1+r2)],key=lambda x: x[0])))
which gives
x = (1, 2, 4, 5, 6, 7)
r = (1, 6, 12, 25, 18, 49)
For 2D it starts getting quite complicated:
import numpy as np
a1 = [1, 5, 7]
b1 = [2, 5, 6]
x1,y1 = np.meshgrid(a1,b1)
r1 = x1*y1
a2 = [2, 4, 6]
b2 = [1, 3, 8]
x2, y2 = np.meshgrid(a2,b2)
r2 = 2*x2
a = [1, 2, 4, 5, 6, 7]
b = [1, 2, 3, 5, 6, 8]
x,y = np.meshgrid(a,b)
r = np.ones(x.shape)*-1
for i in range(x.shape[0]):
for j in range(x.shape[1]):
if x[i,j] in a1 and y[i,j] in b1:
r[i,j] = r1[a1.index(x[i,j]),b1.index(y[i,j])]
elif x[i,j] in a2 and y[i,j] in b2:
r[i,j] = r2[a2.index(x[i,j]),b2.index(y[i,j])]
This gives the desired result, with new coordinate pairs having the value -1
:
x=
[[1 2 4 5 6 7]
[1 2 4 5 6 7]
[1 2 4 5 6 7]
[1 2 4 5 6 7]
[1 2 4 5 6 7]
[1 2 4 5 6 7]]
y=
[[1 1 1 1 1 1]
[2 2 2 2 2 2]
[3 3 3 3 3 3]
[5 5 5 5 5 5]
[6 6 6 6 6 6]
[8 8 8 8 8 8]]
r=
[[ -1. 4. 4. -1. 4. -1.]
[ 2. -1. -1. 5. -1. 6.]
[ -1. 8. 8. -1. 8. -1.]
[ 10. -1. -1. 25. -1. 30.]
[ 14. -1. -1. 35. -1. 42.]
[ -1. 12. 12. -1. 12. -1.]]
but this will also become slow quickly with increasing dimensions and array sizes. So here finally the question: How can this be done using only numpy
functions. If it is not possible, what would be the fastest way to implement this in python
. If it is anyhow relevant, I prefer using Python 3. Note that the functions I use in the examples are not the actual functions I use.
Upvotes: 3
Views: 3806
Reputation: 9820
Divakar's answer is exactly what I needed. I wanted, however, to still try out the second suggestion in that answer and on top I did some profiling. I thought the results may be interesting to others. Here is the code I used for profiling:
import numpy as np
import timeit
import random
def for_join_2d(x1,y1,r1, x2,y2,r2):
"""
The algorithm from the question.
"""
a = sorted(list(x1[0,:])+list(x2[0,:]))
b = sorted(list(y1[:,0])+list(y2[:,0]))
x,y = np.meshgrid(a,b)
r = np.ones(x.shape)*-1
for i in range(x.shape[0]):
for j in range(x.shape[1]):
if x[i,j] in a1 and y[i,j] in b1:
r[i,j] = r1[a1.index(x[i,j]),b1.index(y[i,j])]
elif x[i,j] in a2 and y[i,j] in b2:
r[i,j] = r2[a2.index(x[i,j]),b2.index(y[i,j])]
return x,y,r
def mask_join_2d(x1,y1,r1,x2,y2,r2):
"""
Divakar's original answer.
"""
a = np.sort(np.concatenate((x1[0,:],x2[0,:])))
b = np.sort(np.concatenate((y1[:,0],y2[:,0])))
# Initialize o/p array
x,y = np.meshgrid(a,b)
r_out = np.full([len(a), len(b)],-1)
# Assign for the IF part
mask_a1 = np.in1d(a,a1)
mask_b1 = np.in1d(b,b1)
r_out[np.ix_(mask_b1, mask_a1)] = r1.T
# Assign for the ELIF part
mask_a2 = np.in1d(a,a2)
mask_b2 = np.in1d(b,b2)
r_out[np.ix_(mask_b2, mask_a2)] = r2.T
return x,y,r_out
def searchsort_join_2d(x1,y1,r1,x2,y2,r2):
"""
Divakar's second suggested solution using searchsort.
"""
a = np.sort(np.concatenate((x1[0,:],x2[0,:])))
b = np.sort(np.concatenate((y1[:,0],y2[:,0])))
# Initialize o/p array
x,y = np.meshgrid(a,b)
r_out = np.full([len(a), len(b)],-1)
#the IF part
ind_a1 = np.searchsorted(a,a1)
ind_b1 = np.searchsorted(b,b1)
r_out[np.ix_(ind_b1,ind_a1)] = r1.T
#the ELIF part
ind_a2 = np.searchsorted(a,a2)
ind_b2 = np.searchsorted(b,b2)
r_out[np.ix_(ind_b2,ind_a2)] = r2.T
return x,y,r_out
##the profiling code:
if __name__ == '__main__':
N1 = 100
N2 = 100
coords_a = [i for i in range(N1)]
coords_b = [i*2 for i in range(N2)]
a1 = random.sample(coords_a, N1//2)
b1 = random.sample(coords_b, N2//2)
a2 = [i for i in coords_a if i not in a1]
b2 = [i for i in coords_b if i not in b1]
x1,y1 = np.meshgrid(a1,b1)
r1 = x1*y1
x2,y2 = np.meshgrid(a2,b2)
r2 = 2*x2
print("original for loop")
print(min(timeit.Timer(
'for_join_2d(x1,y1,r1,x2,y2,r2)',
setup = 'from __main__ import for_join_2d,x1,y1,r1,x2,y2,r2',
).repeat(7,1000)))
print("with masks")
print(min(timeit.Timer(
'mask_join_2d(x1,y1,r1,x2,y2,r2)',
setup = 'from __main__ import mask_join_2d,x1,y1,r1,x2,y2,r2',
).repeat(7,1000)))
print("with searchsort")
print(min(timeit.Timer(
'searchsort_join_2d(x1,y1,r1,x2,y2,r2)',
setup = 'from __main__ import searchsort_join_2d,x1,y1,r1,x2,y2,r2',
).repeat(7,1000)))
For each function I used 7 sets of 1000 iterations and picked the fastest set for evaluation. The results for two 10x10 arrays was:
original for loop
0.5114614190533757
with masks
0.21544912096578628
with searchsort
0.12026709201745689
and for two 100x100 arrays it was:
original for loop
247.88183582702186
with masks
0.5245905339252204
with searchsort
0.2439237720100209
For big matrices the use of numpy
functionality unsurprisingly makes a huge difference and indeed searchsort
and indexing instead of masking about halves the run time.
Upvotes: 1
Reputation: 221604
We can make use of some masking to replace the A in B
parts to give us 1D
masks. Then, we can use those masks with np.ix_
to extend to desired number of dimensions.
Thus, for a 2D
case, it would be something along these lines -
# Initialize o/p array
r_out = np.full([len(a), len(b)],-1)
# Assign for the IF part
mask_a1 = np.in1d(a,a1)
mask_b1 = np.in1d(b,b1)
r_out[np.ix_(mask_b1, mask_a1)] = r1.T
# Assign for the ELIF part
mask_a2 = np.in1d(a,a2)
mask_b2 = np.in1d(b,b2)
r_out[np.ix_(mask_b2, mask_a2)] = r2.T
a
could be created, like so -
a = np.concatenate((a1,a2))
a.sort()
Similarly, for b
.
Also, we could make use of indices instead of masks for use with np.ix_
. For the same, we could use np.searchsorted
. Thus, instead of the mask np.in1d(a,a1)
, we could get corresponding indices with np.searchsorted(a,a1)
and so on for the rest of the masks. This should be considerably faster.
For a 3D
case, I would assume that we would have another array, say c
. Thus, the initialization part would involve using len(c)
. There would be one more mask/index-array corresponding to c
and hence one more term into np.ix_
and there would be transpose of r1
and r2
.
Upvotes: 2