Reputation: 26017
I do have a dataframe like this:
import pandas as pd
df = pd.DataFrame({"c0": list('ABC'),
"c1": [" ".join(list('ab')), " ".join(list('def')), " ".join(list('s'))],
"c2": list('DEF')})
c0 c1 c2
0 A a b D
1 B d e f E
2 C s F
I want to create a pivot table that looks like this:
c2
c0 c1
A a D
b D
B d E
e E
f E
C s F
So, the entries in c1
are split and then treated as single elements used in a multiindex.
I do this as follows:
newdf = pd.DataFrame()
for indi, rowi in df.iterrows():
# get all single elements in string
n_elements = rowi['c1'].split()
# only one element so we can just add the entire row
if len(n_elements) == 1:
newdf = newdf.append(rowi)
# more than one element
else:
for eli in n_elements:
# that allows to add new elements using loc, without it we will have identical index values
if not newdf.empty:
newdf = newdf.reset_index(drop=True)
newdf.index = -1 * newdf.index - 1
# add entire row
newdf = newdf.append(rowi)
# replace the entire string by the single element
newdf.loc[indi, 'c1'] = eli
print newdf.reset_index(drop=True)
which yields
c0 c1 c2
0 A a D
1 A b D
2 B d E
3 B e E
4 B f E
5 C s F
Then I can just call
pd.pivot_table(newdf, index=['c0', 'c1'], aggfunc=lambda x: ' '.join(set(str(v) for v in x)))
which gives me the desired output (see above).
For huge dataframes that can be quite slow, so I am wondering whether there is a more efficient way of doing this.
Upvotes: 2
Views: 495
Reputation: 294488
Option 1
import numpy as np, pandas as pd
s = df.c1.str.split()
l = s.str.len()
newdf = df.loc[df.index.repeat(l)].assign(c1=np.concatenate(s)).set_index(['c0', 'c1'])
newdf
c2
c0 c1
A a D
b D
B d E
e E
f E
C s F
Option 2
Should be faster
import numpy as np, pandas as pd
s = np.core.defchararray.split(df.c1.values.astype(str), ' ')
l = [len(x) for x in s.tolist()]
r = np.arange(len(s)).repeat(l)
i = pd.MultiIndex.from_arrays([
df.c0.values[r],
np.concatenate(s)
], names=['c0', 'c1'])
newdf = pd.DataFrame({'c2': df.c2.values[r]}, i)
newdf
c2
c0 c1
A a D
b D
B d E
e E
f E
C s F
Upvotes: 3
Reputation: 323316
This is how I get the result , In R it is called unnest.
df.c1=df.c1.apply(lambda x : pd.Series(x).str.split(' '))
df.set_index(['c0', 'c2'])['c1'].apply(pd.Series).stack().reset_index().drop('level_2',1).rename(columns={0:'c1'}).set_index(['c0','c1'])
Out[208]:
c2
c0 c1
A a D
b D
B d E
e E
f E
C s F
Upvotes: 3