marv722
marv722

Reputation: 67

How to optimize code to pivot table in python pandas

I created a DataFrame in Python pandas that matches companies (A, B, C) to record_ids using four matching strings (type_1, type_2, type_3, and type_4). It looks like this:

    vendor match_type  record_id  percent     cumulative_percent
0     A      type_1      2974     26.348897   26.348897
1     A      type_2       275     2.436431    28.785328
2     A      type_3       214     1.895987    30.681315
3     A      type_4      2341     20.740675   51.421990
4     B      type_1       440     3.898290    55.320280
5     B      type_2        39     0.345530    55.665810
6     B      type_3        54     0.478427    56.144237
7     B      type_4       596     5.280411    61.424648
8     C      type_1       399     3.535040    64.959688
9     C      type_2        70     0.620183    65.579871
10    C      type_3        44     0.389829    65.969700
11    C      type_4       262     2.321255    68.290954
12   NaN      NaN        3579     31.709046   100.000000

Where:

I want to pivot the table to look like this:

match_type    type_1  type_2  type_3  type_4  No Match  Grand Total  percent  cumulative percent
vendor                              
  A            2974    275     214     2341              5804          51.4%      51.4%
  B             440     39      54      596              1129          10.0%      61.4%
  C             399     70      44      262               775           6.9%      68.3%
 NaN                                            3579     3579          31.7%     100.0%
Grand Total    3813    384     312     3199     3579    11287         100.0%    

The problem is it took a lot of code to perform the pivot. I couldn't include the percent and cumulative_percent columns in the pivot_table command, and, thus, had to recompute them. I also had to reorder both the columns and rows.

Can anyone can show me how to optimize this into fewer lines of Python code? Here is the code that I wrote to obtain the pivoted table shown above:

tbl = pd.pivot_table(df, values ="record_id", index ="vendor", columns ="match_type", 
                       aggfunc = np.sum, fill_value="", margins=True, margins_name="Grand Total")
column_order=["type_1", "type_2", "type_3", "type_4", "NaN", "Grand Total"]
tbl = tbl.reindex(column_order, axis=1)
tbl.rename(columns={"NaN":"No Match"}, inplace=True)
row_order = ["A", "B", "C", "NaN", "Grand Total"]
tbl = tbl.reindex(row_order, axis=0)
total=sum(tbl["Grand Total"][0:4])
tbl["percent"]=round(tbl["Grand Total"]/total * 100.0, 1)
tbl["cumulative percent"]=tbl.percent[0:4].cumsum()
tbl.percent=tbl.percent.astype(str) + "%"
tbl["cumulative percent"]=tbl["cumulative percent"].astype(str) + "%"
tbl["cumulative percent"].iloc[4]=""
tbl

Thanks in advance.

Upvotes: 3

Views: 375

Answers (1)

Erfan
Erfan

Reputation: 42916

Here's another approach using pd.crosstab:

df = df.fillna('XXX')
crosstab = pd.crosstab(df['vendor'], 
                       df['match_type'], 
                       df['record_i'], 
                       aggfunc='sum', 
                       margins=True, 
                       margins_name='Grand Total')

piv = crosstab.join(df.groupby('vendor')['percent'].sum())
piv['cumulative_percent'] = piv['percent'].cumsum()
piv = piv.rename(columns={'XXX':'No Match'}).rename(index={'XXX':np.NaN}).fillna('')

            No Match type_1 type_2 type_3 type_4  Grand Total  percent  \
vendor                                                                   
A                      2974    275    214   2341         5804   51.422   
B                       440     39     54    596         1129  10.0027   
C                       399     70     44    262          775  6.86631   
NaN             3579                                     3579   31.709   
Grand Total     3579   3813    384    312   3199        11287            

            cumulative_percent  
vendor                          
A                       51.422  
B                      61.4246  
C                       68.291  
NaN                        100  
Grand Total                    

Upvotes: 2

Related Questions