Reputation: 459
Suppose I construct a multi-index dataframe like the one show here:
prim_ind=np.array(range(0,1000))
for i in range(0,1000):
prim_ind[i]=round(i/4)
d = {'prim_ind' :prim_ind,
'sec_ind' : np.array(range(1,1001)),
'a' : np.array(range(325,1325)),
'b' : np.array(range(8318,9318))}
df= pd.DataFrame(d).set_index(['prim_ind','sec_ind'])
The sec_ind runs sequentially from 1 upwards, but I want to reset this second index so that for each of the prim_ind levels the sec_ind always starts at 1. I have been trying to work out if I can use reset index to do this but am failing miserably.
I know i could iterate over the dataframe to get this outcome but that will be a horrible way to do it and there must be a more pythonic way - can anyone help?
Note: the dataframe i'm working with is actually imported from csv, the code above is just to illustrate this question.
Upvotes: 2
Views: 606
Reputation: 862396
You can use cumcount
for count categories.
df.index = [df.index.get_level_values(0), df.groupby(level=0).cumcount() + 1]
Or better if want also index names is use MultiIndex.from_arrays
:
df.index = pd.MultiIndex.from_arrays([df.index.get_level_values(0),
df.groupby(level=0).cumcount() + 1],
names=df.index.names)
print (df)
a b
prim_ind sec_ind
0 1 325 8318
2 326 8319
3 327 8320
1 1 328 8321
2 329 8322
3 330 8323
2 1 331 8324
So column sec_ind
is not necessary, you can use also:
d = {'prim_ind' :prim_ind,
'a' : np.array(range(325,1325)),
'b' : np.array(range(8318,9318))}
df = pd.DataFrame(d)
print (df.head(8))
a b prim_ind
0 325 8318 0
1 326 8319 0
2 327 8320 0
3 328 8321 1
4 329 8322 1
5 330 8323 1
6 331 8324 2
7 332 8325 2
df = df.set_index(['prim_ind', df.groupby('prim_ind').cumcount() + 1]) \
.rename_axis(('first','second'))
print (df.head(8))
a b
first second
0 1 325 8318
2 326 8319
3 327 8320
1 1 328 8321
2 329 8322
3 330 8323
2 1 331 8324
2 332 8325
Upvotes: 1