Reputation: 459
I have a datatable like this:
Run, test1, test2
1, 100, 102.
2, 110, 100.
3, 108, 105.
I would like to have the 2 columns merged together like this:
Run, results
1, 100
1, 102
2, 110
2, 100
3, 108
3, 105
How do I do it in Pandas? Thanks a lot!
Upvotes: 2
Views: 363
Reputation: 323226
This how I achieve this
Option 1
pd.wide_to_long(df,stubnames='test',i='Run',j='LOL').reset_index().drop('LOL',1)
Out[776]:
Run test
0 1 100.0
1 2 110.0
2 3 108.0
3 1 102.0
4 2 100.0
5 3 105.0
Notice : Here I did not change the column name from test to results, I think by using test as new column name is better in your situation .
Option 2
pd.concat
df=df.set_index('Run')
pd.concat([df[Col] for Col in df.columns],axis=0).reset_index().rename(columns={0:'results'})
Out[786]:
Run results
0 1 100.0
1 2 110.0
2 3 108.0
3 1 102.0
4 2 100.0
5 3 105.0
Upvotes: 2
Reputation: 862581
Use stack
with Multiindex
to column by double reset_index
:
df = df.set_index('Run').stack().reset_index(drop=True, level=1).reset_index(name='results')
print (df)
Run results
0 1 100.0
1 1 102.0
2 2 110.0
3 2 100.0
4 3 108.0
5 3 105.0
Or melt
:
df = df.melt('Run', value_name='results').drop('variable', axis=1).sort_values('Run')
print (df)
Run results
0 1 100.0
3 1 102.0
1 2 110.0
4 2 100.0
2 3 108.0
5 3 105.0
Numpy solution with numpy.repeat
:
a = np.repeat(df['Run'].values, 2)
b = df[['test1','test2']].values.flatten()
df = pd.DataFrame({'Run':a , 'results': b}, columns=['Run','results'])
print (df)
Run results
0 1 100.0
1 1 102.0
2 2 110.0
3 2 100.0
4 3 108.0
5 3 105.0
Upvotes: 2