Reputation: 464
a = {'pk': 1, 'pk_name':'p1', 'c1':1, 'c1_val': 1, 'c1_val2': 1, 'c2':0, 'c2_val': 0, 'c2_val2': 1}
b = {'pk': 2, 'pk_name':'p2', 'c1':0, 'c1_val': 1, 'c1_val2': 1, 'c2':0, 'c2_val': 0, 'c2_val2': 1}
c = {'pk': 3, 'pk_name':'p3', 'c1':0, 'c1_val': 1, 'c1_val2': 1, 'c2':0, 'c2_val': 0, 'c2_val2': 1}
d = {'pk': 4, 'pk_name':'p4', 'c1':1, 'c1_val': 1, 'c1_val2': 1, 'c2':0, 'c2_val': 0, 'c2_val2': 1}
e = {'pk': 5, 'pk_name':'p5', 'c1':1, 'c1_val': 1, 'c1_val2': 1, 'c2':0, 'c2_val': 0, 'c2_val2': 1}
df = pd.DataFrame([a, b, c, d, e])
pk pk_name c1 c1_val c1_val2 c2 c2_val c2_val2
0 1 p1 1 1 1 0 0 1
1 2 p2 0 1 1 0 0 1
2 3 p3 0 1 1 0 0 1
3 4 p4 1 1 1 0 0 1
4 5 p5 1 1 1 0 0 1
I want to transform my dataframe to look like this:
pk pk_name c val val2
0 1 p1 1 1 1
1 2 p2 0 1 1
2 3 p3 0 1 1
3 4 p4 1 1 1
4 5 p5 1 1 1
5 1 p1 0 0 1
6 2 p2 0 0 1
7 3 p3 0 0 1
8 4 p4 0 0 1
9 5 p5 0 0 1
Where the columns begining with c (c1, c2) are stacked and the val columns (val, val2) are melted to long format.
Upvotes: 1
Views: 67
Reputation: 862581
Use lreshape
with extracted columns names:
a = df.columns[df.columns.str.contains('^c\d+$')]
b = df.columns[df.columns.str.endswith('val2')]
c = df.columns[df.columns.str.endswith('val')]
df1 = pd.lreshape(df, {'c': a, 'val' : b, 'val2' : c})
print (df1)
pk pk_name c val val2
0 1 p1 1 1 1
1 2 p2 0 1 1
2 3 p3 0 1 1
3 4 p4 1 1 1
4 5 p5 1 1 1
5 1 p1 0 1 0
6 2 p2 0 1 0
7 3 p3 0 1 0
8 4 p4 0 1 0
9 5 p5 0 1 0
If order should be changed split columns to MultiIndex
and then reshape by DataFrame.stack
:
#rename columns with c and number - add `_c`
cols = df.columns[df.columns.str.contains('^c\d+$')]
df = df.rename(columns = dict(zip(cols, cols + '_c')))
df1 = df.set_index(['pk','pk_name'])
df1.columns = df1.columns.str.split('_', expand=True)
df1 = df1.stack(0).reset_index(level=2, drop=True).reset_index()
print (df1)
pk pk_name c val val2
0 1 p1 1 1 1
1 1 p1 0 0 1
2 2 p2 0 1 1
3 2 p2 0 0 1
4 3 p3 0 1 1
5 3 p3 0 0 1
6 4 p4 1 1 1
7 4 p4 0 0 1
8 5 p5 1 1 1
9 5 p5 0 0 1
Upvotes: 4
Reputation: 2804
Try this:
df1 = df[["pk", "pk_name","c1", "c1_val", "c1_val2"]].rename(columns={"c1": "c", "c1_val":"val","c1_val2":"val2"})
df2 = df[["pk", "pk_name","c2", "c2_val", "c2_val2"]].rename(columns={"c2": "c", "c2_val":"val","c2_val2":"val2"})
pd.concat([df1,df2])
Upvotes: 0