Reputation: 55
I created a custom initializer with Keras. Part of the code is:
def my_init(shape):
P = tf.get_variable("P", shape=shape, initializer = tf.contrib.layers.xavier_initializer())
return P
model = Sequential()
model.add(Conv2D(32, kernel_size=(5, 5),strides=(1, 1), padding='same', input_shape = input_shape, kernel_initializer = my_init))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, kernel_size=(1, 1) , strides=(1, 1) , padding='same' , kernel_initializer = my_init))
When "my_init" initializer is called for the second time in the convolution layer it throws this error:
Variable P already exists, disallowed. Did you mean to set reuse=True in VarScope? Originally defined at:
It is not allowing to reuse the variable P. Is there any way to create a new variable in each call?
Upvotes: 1
Views: 1413
Reputation: 86600
You could try using the Xavier initializers available in Keras, under the names glorot_uniform
and glorot_normal
.
See them here: https://keras.io/initializers/
model.add(Conv2D(32, kernel_size=(1, 1) , strides=(1, 1) ,
padding='same' , kernel_initializer =keras.initializers.glorot_uniform())
Upvotes: 1