Reputation:
This is how i load my csv file in spark data frame
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
import sqlContext.implicits._
import org.apache.spark.{ SparkConf, SparkContext }
import java.sql.{Date, Timestamp}
import org.apache.spark.sql.Row
import org.apache.spark.sql.types._
import org.apache.spark.sql.functions.udf
val get_cus_val = spark.udf.register("get_cus_val", (filePath: String) => filePath.split("\\.")(4))
val df1With_ = df.toDF(df.columns.map(_.replace(".", "_")): _*)
val column_to_keep = df1With_.columns.filter(v => (!v.contains("^") && !v.contains("!") && !v.contains("_c"))).toSeq
val df1result = df1With_.select(column_to_keep.head, column_to_keep.tail: _*)
val df1Final=df1result.withColumn("DataPartition", lit(null: String))
This is example of one of my input file name .
Fundamental.FinancialLineItem.FinancialLineItem.SelfSourcedPrivate.CUS.1.2017-09-07-1056.Full
Fundamental.FinancialLineItem.FinancialLineItem.Japan.CUS.1.2017-09-07-1056.Full.txt
Now i want to read this file and split it with "." operator and then add CUS as new column in place of DataPartition .
Can i do it without any UDF .
Here is the schema of existing data frame
root
|-- LineItem_organizationId: long (nullable = true)
|-- LineItem_lineItemId: integer (nullable = true)
|-- StatementTypeCode: string (nullable = true)
|-- LineItemName: string (nullable = true)
|-- LocalLanguageLabel: string (nullable = true)
|-- FinancialConceptLocal: string (nullable = true)
|-- FinancialConceptGlobal: string (nullable = true)
|-- IsDimensional: boolean (nullable = true)
|-- InstrumentId: string (nullable = true)
|-- LineItemSequence: string (nullable = true)
|-- PhysicalMeasureId: string (nullable = true)
|-- FinancialConceptCodeGlobalSecondary: string (nullable = true)
|-- IsRangeAllowed: boolean (nullable = true)
|-- IsSegmentedByOrigin: boolean (nullable = true)
|-- SegmentGroupDescription: string (nullable = true)
|-- SegmentChildDescription: string (nullable = true)
|-- SegmentChildLocalLanguageLabel: string (nullable = true)
|-- LocalLanguageLabel_languageId: integer (nullable = true)
|-- LineItemName_languageId: integer (nullable = true)
|-- SegmentChildDescription_languageId: integer (nullable = true)
|-- SegmentChildLocalLanguageLabel_languageId: integer (nullable = true)
|-- SegmentGroupDescription_languageId: integer (nullable = true)
|-- SegmentMultipleFundbDescription: string (nullable = true)
|-- SegmentMultipleFundbDescription_languageId: integer (nullable = true)
|-- IsCredit: boolean (nullable = true)
|-- FinancialConceptLocalId: integer (nullable = true)
|-- FinancialConceptGlobalId: integer (nullable = true)
|-- FinancialConceptCodeGlobalSecondaryId: string (nullable = true)
|-- FFAction: string (nullable = true)
Updating the code after suggested answer
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
import sqlContext.implicits._
import org.apache.spark.{ SparkConf, SparkContext }
import java.sql.{Date, Timestamp}
import org.apache.spark.sql.Row
import org.apache.spark.sql.types._
import org.apache.spark.sql.functions.udf
import org.apache.spark.sql.functions.{input_file_name, regexp_extract}
spark.udf.register("get_cus_val", (filePath: String) => filePath.split("\\.")(4))
import org.apache.spark.sql.functions.input_file_name
val df = sqlContext.read.format("csv").option("header", "true").option("delimiter", "|").option("inferSchema","true").load("s3://trfsdisu/SPARK/FinancialLineItem/MAIN")
val df1With_ = df.toDF(df.columns.map(_.replace(".", "_")): _*)
val column_to_keep = df1With_.columns.filter(v => (!v.contains("^") && !v.contains("!") && !v.contains("_c"))).toSeq
val df1result = df1With_.select(column_to_keep.head, column_to_keep.tail: _*)
df1result.withColumn("cus_val", get_cus_val(input_file_name))
df1result.printSchema()
Upvotes: 2
Views: 9230
Reputation: 35434
You can get the file name with predefined UDF i.e input_file_name()
, After that either you can create a UDF to extract CUS or use regexp_extract
wo UDF.
Using regexp_extract
wo UDF regex usage here
import org.apache.spark.sql.functions.input_file_name
import org.apache.spark.sql.functions.regexp_extract
df.withColumn("cus_val",
regexp_extract(input_file_name, "\.(\w+)\.[0-9]+\.", 1))
Using custom UDF
import org.apache.spark.sql.functions.udf
val get_cus_val = udf(filePath: String => filePath.split("\\.")(4))
import org.apache.spark.sql.functions.input_file_name
df.withColumn("cus_val", get_cus_val(input_file_name))
Upvotes: 6