user7547751
user7547751

Reputation:

How to split input file name and add specific value in the spark data frame column

This is how i load my csv file in spark data frame

val sqlContext = new org.apache.spark.sql.SQLContext(sc)
import sqlContext.implicits._

import org.apache.spark.{ SparkConf, SparkContext }
import java.sql.{Date, Timestamp}
import org.apache.spark.sql.Row
import org.apache.spark.sql.types._
import org.apache.spark.sql.functions.udf



val get_cus_val = spark.udf.register("get_cus_val", (filePath: String) => filePath.split("\\.")(4))

val df1With_ = df.toDF(df.columns.map(_.replace(".", "_")): _*)
val column_to_keep = df1With_.columns.filter(v => (!v.contains("^") && !v.contains("!") && !v.contains("_c"))).toSeq
val df1result = df1With_.select(column_to_keep.head, column_to_keep.tail: _*)
val df1Final=df1result.withColumn("DataPartition", lit(null: String))

This is example of one of my input file name .

Fundamental.FinancialLineItem.FinancialLineItem.SelfSourcedPrivate.CUS.1.2017-09-07-1056.Full

Fundamental.FinancialLineItem.FinancialLineItem.Japan.CUS.1.2017-09-07-1056.Full.txt

Now i want to read this file and split it with "." operator and then add CUS as new column in place of DataPartition .

Can i do it without any UDF .

Here is the schema of existing data frame

root
 |-- LineItem_organizationId: long (nullable = true)
 |-- LineItem_lineItemId: integer (nullable = true)
 |-- StatementTypeCode: string (nullable = true)
 |-- LineItemName: string (nullable = true)
 |-- LocalLanguageLabel: string (nullable = true)
 |-- FinancialConceptLocal: string (nullable = true)
 |-- FinancialConceptGlobal: string (nullable = true)
 |-- IsDimensional: boolean (nullable = true)
 |-- InstrumentId: string (nullable = true)
 |-- LineItemSequence: string (nullable = true)
 |-- PhysicalMeasureId: string (nullable = true)
 |-- FinancialConceptCodeGlobalSecondary: string (nullable = true)
 |-- IsRangeAllowed: boolean (nullable = true)
 |-- IsSegmentedByOrigin: boolean (nullable = true)
 |-- SegmentGroupDescription: string (nullable = true)
 |-- SegmentChildDescription: string (nullable = true)
 |-- SegmentChildLocalLanguageLabel: string (nullable = true)
 |-- LocalLanguageLabel_languageId: integer (nullable = true)
 |-- LineItemName_languageId: integer (nullable = true)
 |-- SegmentChildDescription_languageId: integer (nullable = true)
 |-- SegmentChildLocalLanguageLabel_languageId: integer (nullable = true)
 |-- SegmentGroupDescription_languageId: integer (nullable = true)
 |-- SegmentMultipleFundbDescription: string (nullable = true)
 |-- SegmentMultipleFundbDescription_languageId: integer (nullable = true)
 |-- IsCredit: boolean (nullable = true)
 |-- FinancialConceptLocalId: integer (nullable = true)
 |-- FinancialConceptGlobalId: integer (nullable = true)
 |-- FinancialConceptCodeGlobalSecondaryId: string (nullable = true)
 |-- FFAction: string (nullable = true)

Updating the code after suggested answer

    val sqlContext = new org.apache.spark.sql.SQLContext(sc)
    import sqlContext.implicits._

    import org.apache.spark.{ SparkConf, SparkContext }
    import java.sql.{Date, Timestamp}
    import org.apache.spark.sql.Row
    import org.apache.spark.sql.types._
    import org.apache.spark.sql.functions.udf
    import org.apache.spark.sql.functions.{input_file_name, regexp_extract}

spark.udf.register("get_cus_val", (filePath: String) => filePath.split("\\.")(4))

import org.apache.spark.sql.functions.input_file_name

val df = sqlContext.read.format("csv").option("header", "true").option("delimiter", "|").option("inferSchema","true").load("s3://trfsdisu/SPARK/FinancialLineItem/MAIN")

val df1With_ = df.toDF(df.columns.map(_.replace(".", "_")): _*)
val column_to_keep = df1With_.columns.filter(v => (!v.contains("^") && !v.contains("!") && !v.contains("_c"))).toSeq
val df1result = df1With_.select(column_to_keep.head, column_to_keep.tail: _*)

df1result.withColumn("cus_val", get_cus_val(input_file_name))

df1result.printSchema()

Upvotes: 2

Views: 9230

Answers (1)

mrsrinivas
mrsrinivas

Reputation: 35434

You can get the file name with predefined UDF i.e input_file_name(), After that either you can create a UDF to extract CUS or use regexp_extract wo UDF.

Using regexp_extract wo UDF regex usage here

import org.apache.spark.sql.functions.input_file_name
import org.apache.spark.sql.functions.regexp_extract

df.withColumn("cus_val", 
  regexp_extract(input_file_name, "\.(\w+)\.[0-9]+\.", 1))

Using custom UDF

import org.apache.spark.sql.functions.udf

val get_cus_val = udf(filePath: String => filePath.split("\\.")(4))

import org.apache.spark.sql.functions.input_file_name

df.withColumn("cus_val", get_cus_val(input_file_name))

Upvotes: 6

Related Questions