Abhinav Gupta
Abhinav Gupta

Reputation: 473

Need help installing adspy module in python

I am trying the following and getting the same error each time:

pip install adspy

pip install adspy-0.2.0.tar.gz

Error:

Collecting adspy
Using cached adspy-0.2.0.tar.gz
Complete output from command python setup.py egg_info:
Traceback (most recent call last):
  File "<string>", line 1, in <module>
  File "C:\Users\Abhinav\AppData\Local\Temp\pip-build-4we07kw9\adspy\setup.p
y", line 5, in <module>
    long_description = open(README).read() + 'nn'
FileNotFoundError: [Errno 2] No such file or directory: 'C:\\Users\\Abhinav\
\AppData\\Local\\Temp\\pip-build-4we07kw9\\adspy\\README.md'

Error is same in both case

Upvotes: 2

Views: 768

Answers (1)

Anice Jahanjoo
Anice Jahanjoo

Reputation: 8146

Create adspy_shared_utilities.py file in your project and paste the code below in it

import numpy
import pandas as pd
import seaborn as sn
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from matplotlib.colors import ListedColormap, BoundaryNorm
from sklearn import neighbors
import matplotlib.patches as mpatches
import graphviz
from sklearn.tree import export_graphviz
import matplotlib.patches as mpatches

def load_crime_dataset():
    # Communities and Crime dataset for regression
    # https://archive.ics.uci.edu/ml/datasets/Communities+and+Crime+Unnormalized

    crime = pd.read_table('readonly/CommViolPredUnnormalizedData.txt', sep=',', na_values='?')
    # remove features with poor coverage or lower relevance, and keep ViolentCrimesPerPop target column
    columns_to_keep = [5, 6] + list(range(11,26)) + list(range(32, 103)) + [145]  
    crime = crime.ix[:,columns_to_keep].dropna()

    X_crime = crime.ix[:,range(0,88)]
    y_crime = crime['ViolentCrimesPerPop']

    return (X_crime, y_crime)

def plot_decision_tree(clf, feature_names, class_names):
    # This function requires the pydotplus module and assumes it's been installed.
    # In some cases (typically under Windows) even after running conda install, there is a problem where the
    # pydotplus module is not found when running from within the notebook environment.  The following code
    # may help to guarantee the module is installed in the current notebook environment directory.
    #
    # import sys; sys.executable
    # !{sys.executable} -m pip install pydotplus

    export_graphviz(clf, out_file="adspy_temp.dot", feature_names=feature_names, class_names=class_names, filled = True, impurity = False)
    with open("adspy_temp.dot") as f:
        dot_graph = f.read()
    # Alternate method using pydotplus, if installed.
    # graph = pydotplus.graphviz.graph_from_dot_data(dot_graph)
    # return graph.create_png()
    return graphviz.Source(dot_graph)

def plot_feature_importances(clf, feature_names):
    c_features = len(feature_names)
    plt.barh(range(c_features), clf.feature_importances_)
    plt.xlabel("Feature importance")
    plt.ylabel("Feature name")
    plt.yticks(numpy.arange(c_features), feature_names)

def plot_labelled_scatter(X, y, class_labels):
    num_labels = len(class_labels)

    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1

    marker_array = ['o', '^', '*']
    color_array = ['#FFFF00', '#00AAFF', '#000000', '#FF00AA']
    cmap_bold = ListedColormap(color_array)
    bnorm = BoundaryNorm(numpy.arange(0, num_labels + 1, 1), ncolors=num_labels)
    plt.figure()

    plt.scatter(X[:, 0], X[:, 1], s=65, c=y, cmap=cmap_bold, norm = bnorm, alpha = 0.40, edgecolor='black', lw = 1)

    plt.xlim(x_min, x_max)
    plt.ylim(y_min, y_max)

    h = []
    for c in range(0, num_labels):
        h.append(mpatches.Patch(color=color_array[c], label=class_labels[c]))
    plt.legend(handles=h)

    plt.show()


def plot_class_regions_for_classifier_subplot(clf, X, y, X_test, y_test, title, subplot, target_names = None, plot_decision_regions = True):

    numClasses = numpy.amax(y) + 1
    color_list_light = ['#FFFFAA', '#EFEFEF', '#AAFFAA', '#AAAAFF']
    color_list_bold = ['#EEEE00', '#000000', '#00CC00', '#0000CC']
    cmap_light = ListedColormap(color_list_light[0:numClasses])
    cmap_bold  = ListedColormap(color_list_bold[0:numClasses])

    h = 0.03
    k = 0.5
    x_plot_adjust = 0.1
    y_plot_adjust = 0.1
    plot_symbol_size = 50

    x_min = X[:, 0].min()
    x_max = X[:, 0].max()
    y_min = X[:, 1].min()
    y_max = X[:, 1].max()
    x2, y2 = numpy.meshgrid(numpy.arange(x_min-k, x_max+k, h), numpy.arange(y_min-k, y_max+k, h))

    P = clf.predict(numpy.c_[x2.ravel(), y2.ravel()])
    P = P.reshape(x2.shape)

    if plot_decision_regions:
        subplot.contourf(x2, y2, P, cmap=cmap_light, alpha = 0.8)

    subplot.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold, s=plot_symbol_size, edgecolor = 'black')
    subplot.set_xlim(x_min - x_plot_adjust, x_max + x_plot_adjust)
    subplot.set_ylim(y_min - y_plot_adjust, y_max + y_plot_adjust)

    if (X_test is not None):
        subplot.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cmap_bold, s=plot_symbol_size, marker='^', edgecolor = 'black')
        train_score = clf.score(X, y)
        test_score  = clf.score(X_test, y_test)
        title = title + "\nTrain score = {:.2f}, Test score = {:.2f}".format(train_score, test_score)

    subplot.set_title(title)

    if (target_names is not None):
        legend_handles = []
        for i in range(0, len(target_names)):
            patch = mpatches.Patch(color=color_list_bold[i], label=target_names[i])
            legend_handles.append(patch)
        subplot.legend(loc=0, handles=legend_handles)


def plot_class_regions_for_classifier(clf, X, y, X_test=None, y_test=None, title=None, target_names = None, plot_decision_regions = True):

    numClasses = numpy.amax(y) + 1
    color_list_light = ['#FFFFAA', '#EFEFEF', '#AAFFAA', '#AAAAFF']
    color_list_bold = ['#EEEE00', '#000000', '#00CC00', '#0000CC']
    cmap_light = ListedColormap(color_list_light[0:numClasses])
    cmap_bold  = ListedColormap(color_list_bold[0:numClasses])

    h = 0.03
    k = 0.5
    x_plot_adjust = 0.1
    y_plot_adjust = 0.1
    plot_symbol_size = 50

    x_min = X[:, 0].min()
    x_max = X[:, 0].max()
    y_min = X[:, 1].min()
    y_max = X[:, 1].max()
    x2, y2 = numpy.meshgrid(numpy.arange(x_min-k, x_max+k, h), numpy.arange(y_min-k, y_max+k, h))

    P = clf.predict(numpy.c_[x2.ravel(), y2.ravel()])
    P = P.reshape(x2.shape)
    plt.figure()
    if plot_decision_regions:
        plt.contourf(x2, y2, P, cmap=cmap_light, alpha = 0.8)

    plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold, s=plot_symbol_size, edgecolor = 'black')
    plt.xlim(x_min - x_plot_adjust, x_max + x_plot_adjust)
    plt.ylim(y_min - y_plot_adjust, y_max + y_plot_adjust)

    if (X_test is not None):
        plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cmap_bold, s=plot_symbol_size, marker='^', edgecolor = 'black')
        train_score = clf.score(X, y)
        test_score  = clf.score(X_test, y_test)
        title = title + "\nTrain score = {:.2f}, Test score = {:.2f}".format(train_score, test_score)

    if (target_names is not None):
        legend_handles = []
        for i in range(0, len(target_names)):
            patch = mpatches.Patch(color=color_list_bold[i], label=target_names[i])
            legend_handles.append(patch)
        plt.legend(loc=0, handles=legend_handles)

    if (title is not None):
        plt.title(title)
    plt.show()

def plot_fruit_knn(X, y, n_neighbors, weights):
    X_mat = X[['height', 'width']].to_numpy()
    y_mat = y.to_numpy()

    # Create color maps
    cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF','#AFAFAF'])
    cmap_bold  = ListedColormap(['#FF0000', '#00FF00', '#0000FF','#AFAFAF'])

    clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
    clf.fit(X_mat, y_mat)

    # Plot the decision boundary by assigning a color in the color map
    # to each mesh point.

    mesh_step_size = .01  # step size in the mesh
    plot_symbol_size = 50

    x_min, x_max = X_mat[:, 0].min() - 1, X_mat[:, 0].max() + 1
    y_min, y_max = X_mat[:, 1].min() - 1, X_mat[:, 1].max() + 1
    xx, yy = numpy.meshgrid(numpy.arange(x_min, x_max, mesh_step_size),
                         numpy.arange(y_min, y_max, mesh_step_size))
    Z = clf.predict(numpy.c_[xx.ravel(), yy.ravel()])

    # Put the result into a color plot
    Z = Z.reshape(xx.shape)
    plt.figure()
    plt.pcolormesh(xx, yy, Z, cmap=cmap_light)

    # Plot training points
    plt.scatter(X_mat[:, 0], X_mat[:, 1], s=plot_symbol_size, c=y, cmap=cmap_bold, edgecolor = 'black')
    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())

    patch0 = mpatches.Patch(color='#FF0000', label='apple')
    patch1 = mpatches.Patch(color='#00FF00', label='mandarin')
    patch2 = mpatches.Patch(color='#0000FF', label='orange')
    patch3 = mpatches.Patch(color='#AFAFAF', label='lemon')
    plt.legend(handles=[patch0, patch1, patch2, patch3])


    plt.xlabel('height (cm)')
    plt.ylabel('width (cm)')

    plt.show()

def plot_two_class_knn(X, y, n_neighbors, weights, X_test, y_test):
    X_mat = X
    y_mat = y

    # Create color maps
    cmap_light = ListedColormap(['#FFFFAA', '#AAFFAA', '#AAAAFF','#EFEFEF'])
    cmap_bold  = ListedColormap(['#FFFF00', '#00FF00', '#0000FF','#000000'])

    clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
    clf.fit(X_mat, y_mat)

    # Plot the decision boundary by assigning a color in the color map
    # to each mesh point.

    mesh_step_size = .01  # step size in the mesh
    plot_symbol_size = 50

    x_min, x_max = X_mat[:, 0].min() - 1, X_mat[:, 0].max() + 1
    y_min, y_max = X_mat[:, 1].min() - 1, X_mat[:, 1].max() + 1
    xx, yy = numpy.meshgrid(numpy.arange(x_min, x_max, mesh_step_size),
                         numpy.arange(y_min, y_max, mesh_step_size))
    Z = clf.predict(numpy.c_[xx.ravel(), yy.ravel()])

    # Put the result into a color plot
    Z = Z.reshape(xx.shape)
    plt.figure()
    plt.pcolormesh(xx, yy, Z, cmap=cmap_light)

    # Plot training points
    plt.scatter(X_mat[:, 0], X_mat[:, 1], s=plot_symbol_size, c=y, cmap=cmap_bold, edgecolor = 'black')
    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())

    title = "Neighbors = {}".format(n_neighbors)
    if (X_test is not None):
        train_score = clf.score(X_mat, y_mat)
        test_score  = clf.score(X_test, y_test)
        title = title + "\nTrain score = {:.2f}, Test score = {:.2f}".format(train_score, test_score)

    patch0 = mpatches.Patch(color='#FFFF00', label='class 0')
    patch1 = mpatches.Patch(color='#000000', label='class 1')
    plt.legend(handles=[patch0, patch1])

    plt.xlabel('Feature 0')
    plt.ylabel('Feature 1')
    plt.title(title)

    plt.show()

adspy_shared_utilities.py is not a module it is just a file that it is used in "Applied Machine Learning in Python" course in coursera. I hope it solve this problem.

Upvotes: 2

Related Questions