Reputation: 53
I'm trying to plot the decision boundaries for my KNN classifier using the adspy
package, but whenever I use this package it is not importing. I have downloaded it several times using conda
prompt but nothing is happening.
Code with error message:
from adspy_shared_utilities import plot_fruit_knn
plot_fruit_knn(X_train, y_train, 5, 'uniform')
ModuleNotFoundError Traceback (most recent call last)
<ipython-input-7-ddf0c07df9f1> in <module>()
----> 1 from adspy_shared_utilities import plot_fruit_knn
2
3 plot_fruit_knn(X_train, y_train, 5, 'uniform')
ModuleNotFoundError: No module named 'adspy_shared_utilities'
How do I resolve this please?
Upvotes: 4
Views: 16070
Reputation: 11
The code provided by the course is not working because of deprecated functions, so here I leave you with a working function using dataframes and making it a little bit "clearer".
In the following picture you can see the result: K-NN Boundaries with K=5
def plot_fruit_knn(X, y, n_neighbors=5, weights='uniform'):
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.neighbors import KNeighborsClassifier
from matplotlib.colors import ListedColormap
import matplotlib.patches as mpatches
X_mat = X[['height', 'width']]
y_mat = y
# We create the classifier and define K and type of weight:
clf = KNeighborsClassifier(n_neighbors, weights=weights)
clf.fit(X_mat, y_mat)
# Create color maps
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF','#AFAFAF'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF','#AFAFAF'])
mesh_step_size = .01 # step size in the mesh
plot_symbol_size = 50
x_min, x_max = X_mat['height'].min() - 1, X_mat['height'].max() + 1
y_min, y_max = X_mat['width'].min() - 1, X_mat['width'].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, mesh_step_size),
np.arange(y_min, y_max, mesh_step_size))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
# Plot training points
plt.scatter(X_mat['height'], X_mat['width'], s=plot_symbol_size, c=y, cmap=cmap_bold, edgecolor = 'black')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
patch0 = mpatches.Patch(color='#FF0000', label='apple')
patch1 = mpatches.Patch(color='#00FF00', label='mandarin')
patch2 = mpatches.Patch(color='#0000FF', label='orange')
patch3 = mpatches.Patch(color='#AFAFAF', label='lemon')
plt.legend(handles=[patch0, patch1, patch2, patch3])
plt.title('K-NN decision boundaries with K= {}'.format(n_neighbors))
plt.xlabel('height (cm)')
plt.ylabel('width (cm)')
plt.show()
´´´´
Upvotes: 0
Reputation: 11
Here I leave you the adspy_shared_utilities.py from the co
# version 1.1
import numpy
import pandas as pd
import seaborn as sn
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from matplotlib.colors import ListedColormap, BoundaryNorm
from sklearn import neighbors
import matplotlib.patches as mpatches
import graphviz
from sklearn.tree import export_graphviz
import matplotlib.patches as mpatches
def load_crime_dataset():
# Communities and Crime dataset for regression
# https://archive.ics.uci.edu/ml/datasets/Communities+and+Crime+Unnormalized
crime = pd.read_table('readonly/CommViolPredUnnormalizedData.txt', sep=',', na_values='?')
# remove features with poor coverage or lower relevance, and keep ViolentCrimesPerPop target column
columns_to_keep = [5, 6] + list(range(11,26)) + list(range(32, 103)) + [145]
crime = crime.ix[:,columns_to_keep].dropna()
X_crime = crime.ix[:,range(0,88)]
y_crime = crime['ViolentCrimesPerPop']
return (X_crime, y_crime)
def plot_decision_tree(clf, feature_names, class_names):
# This function requires the pydotplus module and assumes it's been installed.
# In some cases (typically under Windows) even after running conda install, there is a problem where the
# pydotplus module is not found when running from within the notebook environment. The following code
# may help to guarantee the module is installed in the current notebook environment directory.
#
# import sys; sys.executable
# !{sys.executable} -m pip install pydotplus
export_graphviz(clf, out_file="adspy_temp.dot", feature_names=feature_names, class_names=class_names, filled = True, impurity = False)
with open("adspy_temp.dot") as f:
dot_graph = f.read()
# Alternate method using pydotplus, if installed.
# graph = pydotplus.graphviz.graph_from_dot_data(dot_graph)
# return graph.create_png()
return graphviz.Source(dot_graph)
def plot_feature_importances(clf, feature_names):
c_features = len(feature_names)
plt.barh(range(c_features), clf.feature_importances_)
plt.xlabel("Feature importance")
plt.ylabel("Feature name")
plt.yticks(numpy.arange(c_features), feature_names)
def plot_labelled_scatter(X, y, class_labels):
num_labels = len(class_labels)
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
marker_array = ['o', '^', '*']
color_array = ['#FFFF00', '#00AAFF', '#000000', '#FF00AA']
cmap_bold = ListedColormap(color_array)
bnorm = BoundaryNorm(numpy.arange(0, num_labels + 1, 1), ncolors=num_labels)
plt.figure()
plt.scatter(X[:, 0], X[:, 1], s=65, c=y, cmap=cmap_bold, norm = bnorm, alpha = 0.40, edgecolor='black', lw = 1)
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
h = []
for c in range(0, num_labels):
h.append(mpatches.Patch(color=color_array[c], label=class_labels[c]))
plt.legend(handles=h)
plt.show()
def plot_class_regions_for_classifier_subplot(clf, X, y, X_test, y_test, title, subplot, target_names = None, plot_decision_regions = True):
numClasses = numpy.amax(y) + 1
color_list_light = ['#FFFFAA', '#EFEFEF', '#AAFFAA', '#AAAAFF']
color_list_bold = ['#EEEE00', '#000000', '#00CC00', '#0000CC']
cmap_light = ListedColormap(color_list_light[0:numClasses])
cmap_bold = ListedColormap(color_list_bold[0:numClasses])
h = 0.03
k = 0.5
x_plot_adjust = 0.1
y_plot_adjust = 0.1
plot_symbol_size = 50
x_min = X[:, 0].min()
x_max = X[:, 0].max()
y_min = X[:, 1].min()
y_max = X[:, 1].max()
x2, y2 = numpy.meshgrid(numpy.arange(x_min-k, x_max+k, h), numpy.arange(y_min-k, y_max+k, h))
P = clf.predict(numpy.c_[x2.ravel(), y2.ravel()])
P = P.reshape(x2.shape)
if plot_decision_regions:
subplot.contourf(x2, y2, P, cmap=cmap_light, alpha = 0.8)
subplot.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold, s=plot_symbol_size, edgecolor = 'black')
subplot.set_xlim(x_min - x_plot_adjust, x_max + x_plot_adjust)
subplot.set_ylim(y_min - y_plot_adjust, y_max + y_plot_adjust)
if (X_test is not None):
subplot.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cmap_bold, s=plot_symbol_size, marker='^', edgecolor = 'black')
train_score = clf.score(X, y)
test_score = clf.score(X_test, y_test)
title = title + "\nTrain score = {:.2f}, Test score = {:.2f}".format(train_score, test_score)
subplot.set_title(title)
if (target_names is not None):
legend_handles = []
for i in range(0, len(target_names)):
patch = mpatches.Patch(color=color_list_bold[i], label=target_names[i])
legend_handles.append(patch)
subplot.legend(loc=0, handles=legend_handles)
def plot_class_regions_for_classifier(clf, X, y, X_test=None, y_test=None, title=None, target_names = None, plot_decision_regions = True):
numClasses = numpy.amax(y) + 1
color_list_light = ['#FFFFAA', '#EFEFEF', '#AAFFAA', '#AAAAFF']
color_list_bold = ['#EEEE00', '#000000', '#00CC00', '#0000CC']
cmap_light = ListedColormap(color_list_light[0:numClasses])
cmap_bold = ListedColormap(color_list_bold[0:numClasses])
h = 0.03
k = 0.5
x_plot_adjust = 0.1
y_plot_adjust = 0.1
plot_symbol_size = 50
x_min = X[:, 0].min()
x_max = X[:, 0].max()
y_min = X[:, 1].min()
y_max = X[:, 1].max()
x2, y2 = numpy.meshgrid(numpy.arange(x_min-k, x_max+k, h), numpy.arange(y_min-k, y_max+k, h))
P = clf.predict(numpy.c_[x2.ravel(), y2.ravel()])
P = P.reshape(x2.shape)
plt.figure()
if plot_decision_regions:
plt.contourf(x2, y2, P, cmap=cmap_light, alpha = 0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold, s=plot_symbol_size, edgecolor = 'black')
plt.xlim(x_min - x_plot_adjust, x_max + x_plot_adjust)
plt.ylim(y_min - y_plot_adjust, y_max + y_plot_adjust)
if (X_test is not None):
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cmap_bold, s=plot_symbol_size, marker='^', edgecolor = 'black')
train_score = clf.score(X, y)
test_score = clf.score(X_test, y_test)
title = title + "\nTrain score = {:.2f}, Test score = {:.2f}".format(train_score, test_score)
if (target_names is not None):
legend_handles = []
for i in range(0, len(target_names)):
patch = mpatches.Patch(color=color_list_bold[i], label=target_names[i])
legend_handles.append(patch)
plt.legend(loc=0, handles=legend_handles)
if (title is not None):
plt.title(title)
plt.show()
def plot_fruit_knn(X, y, n_neighbors, weights):
X_mat = X[['height', 'width']].as_matrix()
y_mat = y.as_matrix()
# Create color maps
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF','#AFAFAF'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF','#AFAFAF'])
clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
clf.fit(X_mat, y_mat)
# Plot the decision boundary by assigning a color in the color map
# to each mesh point.
mesh_step_size = .01 # step size in the mesh
plot_symbol_size = 50
x_min, x_max = X_mat[:, 0].min() - 1, X_mat[:, 0].max() + 1
y_min, y_max = X_mat[:, 1].min() - 1, X_mat[:, 1].max() + 1
xx, yy = numpy.meshgrid(numpy.arange(x_min, x_max, mesh_step_size),
numpy.arange(y_min, y_max, mesh_step_size))
Z = clf.predict(numpy.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
# Plot training points
plt.scatter(X_mat[:, 0], X_mat[:, 1], s=plot_symbol_size, c=y, cmap=cmap_bold, edgecolor = 'black')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
patch0 = mpatches.Patch(color='#FF0000', label='apple')
patch1 = mpatches.Patch(color='#00FF00', label='mandarin')
patch2 = mpatches.Patch(color='#0000FF', label='orange')
patch3 = mpatches.Patch(color='#AFAFAF', label='lemon')
plt.legend(handles=[patch0, patch1, patch2, patch3])
plt.xlabel('height (cm)')
plt.ylabel('width (cm)')
plt.show()
def plot_two_class_knn(X, y, n_neighbors, weights, X_test, y_test):
X_mat = X
y_mat = y
# Create color maps
cmap_light = ListedColormap(['#FFFFAA', '#AAFFAA', '#AAAAFF','#EFEFEF'])
cmap_bold = ListedColormap(['#FFFF00', '#00FF00', '#0000FF','#000000'])
clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
clf.fit(X_mat, y_mat)
# Plot the decision boundary by assigning a color in the color map
# to each mesh point.
mesh_step_size = .01 # step size in the mesh
plot_symbol_size = 50
x_min, x_max = X_mat[:, 0].min() - 1, X_mat[:, 0].max() + 1
y_min, y_max = X_mat[:, 1].min() - 1, X_mat[:, 1].max() + 1
xx, yy = numpy.meshgrid(numpy.arange(x_min, x_max, mesh_step_size),
numpy.arange(y_min, y_max, mesh_step_size))
Z = clf.predict(numpy.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
# Plot training points
plt.scatter(X_mat[:, 0], X_mat[:, 1], s=plot_symbol_size, c=y, cmap=cmap_bold, edgecolor = 'black')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
title = "Neighbors = {}".format(n_neighbors)
if (X_test is not None):
train_score = clf.score(X_mat, y_mat)
test_score = clf.score(X_test, y_test)
title = title + "\nTrain score = {:.2f}, Test score = {:.2f}".format(train_score, test_score)
patch0 = mpatches.Patch(color='#FFFF00', label='class 0')
patch1 = mpatches.Patch(color='#000000', label='class 1')
plt.legend(handles=[patch0, patch1])
plt.xlabel('Feature 0')
plt.ylabel('Feature 1')
plt.title(title)
plt.show()
Hope it helps
Upvotes: 1
Reputation: 1
If you are looking for the script, copy adspy_shared_utilities code below into the same folder as your python scripts
import numpy
import pandas as pd
import seaborn as sn
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from matplotlib.colors import ListedColormap, BoundaryNorm
from sklearn import neighbors
import matplotlib.patches as mpatches
import graphviz
from sklearn.tree import export_graphviz
import matplotlib.patches as mpatches
def load_crime_dataset():
# Communities and Crime dataset for regression
# https://archive.ics.uci.edu/ml/datasets/Communities+and+Crime+Unnormalized
crime = pd.read_table('readonly/CommViolPredUnnormalizedData.txt', sep=',', na_values='?')
# remove features with poor coverage or lower relevance, and keep ViolentCrimesPerPop target column
columns_to_keep = [5, 6] + list(range(11,26)) + list(range(32, 103)) + [145]
crime = crime.ix[:,columns_to_keep].dropna()
X_crime = crime.ix[:,range(0,88)]
y_crime = crime['ViolentCrimesPerPop']
return (X_crime, y_crime)
def plot_decision_tree(clf, feature_names, class_names):
# This function requires the pydotplus module and assumes it's been installed.
# In some cases (typically under Windows) even after running conda install, there is a problem where the
# pydotplus module is not found when running from within the notebook environment. The following code
# may help to guarantee the module is installed in the current notebook environment directory.
#
# import sys; sys.executable
# !{sys.executable} -m pip install pydotplus
export_graphviz(clf, out_file="adspy_temp.dot", feature_names=feature_names, class_names=class_names, filled = True, impurity = False)
with open("adspy_temp.dot") as f:
dot_graph = f.read()
# Alternate method using pydotplus, if installed.
# graph = pydotplus.graphviz.graph_from_dot_data(dot_graph)
# return graph.create_png()
return graphviz.Source(dot_graph)
def plot_feature_importances(clf, feature_names):
c_features = len(feature_names)
plt.barh(range(c_features), clf.feature_importances_)
plt.xlabel("Feature importance")
plt.ylabel("Feature name")
plt.yticks(numpy.arange(c_features), feature_names)
def plot_labelled_scatter(X, y, class_labels):
num_labels = len(class_labels)
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
marker_array = ['o', '^', '*']
color_array = ['#FFFF00', '#00AAFF', '#000000', '#FF00AA']
cmap_bold = ListedColormap(color_array)
bnorm = BoundaryNorm(numpy.arange(0, num_labels + 1, 1), ncolors=num_labels)
plt.figure()
plt.scatter(X[:, 0], X[:, 1], s=65, c=y, cmap=cmap_bold, norm = bnorm, alpha = 0.40, edgecolor='black', lw = 1)
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
h = []
for c in range(0, num_labels):
h.append(mpatches.Patch(color=color_array[c], label=class_labels[c]))
plt.legend(handles=h)
plt.show()
def plot_class_regions_for_classifier_subplot(clf, X, y, X_test, y_test, title, subplot, target_names = None, plot_decision_regions = True):
numClasses = numpy.amax(y) + 1
color_list_light = ['#FFFFAA', '#EFEFEF', '#AAFFAA', '#AAAAFF']
color_list_bold = ['#EEEE00', '#000000', '#00CC00', '#0000CC']
cmap_light = ListedColormap(color_list_light[0:numClasses])
cmap_bold = ListedColormap(color_list_bold[0:numClasses])
h = 0.03
k = 0.5
x_plot_adjust = 0.1
y_plot_adjust = 0.1
plot_symbol_size = 50
x_min = X[:, 0].min()
x_max = X[:, 0].max()
y_min = X[:, 1].min()
y_max = X[:, 1].max()
x2, y2 = numpy.meshgrid(numpy.arange(x_min-k, x_max+k, h), numpy.arange(y_min-k, y_max+k, h))
P = clf.predict(numpy.c_[x2.ravel(), y2.ravel()])
P = P.reshape(x2.shape)
if plot_decision_regions:
subplot.contourf(x2, y2, P, cmap=cmap_light, alpha = 0.8)
subplot.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold, s=plot_symbol_size, edgecolor = 'black')
subplot.set_xlim(x_min - x_plot_adjust, x_max + x_plot_adjust)
subplot.set_ylim(y_min - y_plot_adjust, y_max + y_plot_adjust)
if (X_test is not None):
subplot.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cmap_bold, s=plot_symbol_size, marker='^', edgecolor = 'black')
train_score = clf.score(X, y)
test_score = clf.score(X_test, y_test)
title = title + "\nTrain score = {:.2f}, Test score = {:.2f}".format(train_score, test_score)
subplot.set_title(title)
if (target_names is not None):
legend_handles = []
for i in range(0, len(target_names)):
patch = mpatches.Patch(color=color_list_bold[i], label=target_names[i])
legend_handles.append(patch)
subplot.legend(loc=0, handles=legend_handles)
def plot_class_regions_for_classifier(clf, X, y, X_test=None, y_test=None, title=None, target_names = None, plot_decision_regions = True):
numClasses = numpy.amax(y) + 1
color_list_light = ['#FFFFAA', '#EFEFEF', '#AAFFAA', '#AAAAFF']
color_list_bold = ['#EEEE00', '#000000', '#00CC00', '#0000CC']
cmap_light = ListedColormap(color_list_light[0:numClasses])
cmap_bold = ListedColormap(color_list_bold[0:numClasses])
h = 0.03
k = 0.5
x_plot_adjust = 0.1
y_plot_adjust = 0.1
plot_symbol_size = 50
x_min = X[:, 0].min()
x_max = X[:, 0].max()
y_min = X[:, 1].min()
y_max = X[:, 1].max()
x2, y2 = numpy.meshgrid(numpy.arange(x_min-k, x_max+k, h), numpy.arange(y_min-k, y_max+k, h))
P = clf.predict(numpy.c_[x2.ravel(), y2.ravel()])
P = P.reshape(x2.shape)
plt.figure()
if plot_decision_regions:
plt.contourf(x2, y2, P, cmap=cmap_light, alpha = 0.8)
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold, s=plot_symbol_size, edgecolor = 'black')
plt.xlim(x_min - x_plot_adjust, x_max + x_plot_adjust)
plt.ylim(y_min - y_plot_adjust, y_max + y_plot_adjust)
if (X_test is not None):
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cmap_bold, s=plot_symbol_size, marker='^', edgecolor = 'black')
train_score = clf.score(X, y)
test_score = clf.score(X_test, y_test)
title = title + "\nTrain score = {:.2f}, Test score = {:.2f}".format(train_score, test_score)
if (target_names is not None):
legend_handles = []
for i in range(0, len(target_names)):
patch = mpatches.Patch(color=color_list_bold[i], label=target_names[i])
legend_handles.append(patch)
plt.legend(loc=0, handles=legend_handles)
if (title is not None):
plt.title(title)
plt.show()
def plot_fruit_knn(X, y, n_neighbors, weights):
X_mat = X[['height', 'width']].as_matrix()
y_mat = y.as_matrix()
# Create color maps
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF','#AFAFAF'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF','#AFAFAF'])
clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
clf.fit(X_mat, y_mat)
# Plot the decision boundary by assigning a color in the color map
# to each mesh point.
mesh_step_size = .01 # step size in the mesh
plot_symbol_size = 50
x_min, x_max = X_mat[:, 0].min() - 1, X_mat[:, 0].max() + 1
y_min, y_max = X_mat[:, 1].min() - 1, X_mat[:, 1].max() + 1
xx, yy = numpy.meshgrid(numpy.arange(x_min, x_max, mesh_step_size),
numpy.arange(y_min, y_max, mesh_step_size))
Z = clf.predict(numpy.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
# Plot training points
plt.scatter(X_mat[:, 0], X_mat[:, 1], s=plot_symbol_size, c=y, cmap=cmap_bold, edgecolor = 'black')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
patch0 = mpatches.Patch(color='#FF0000', label='apple')
patch1 = mpatches.Patch(color='#00FF00', label='mandarin')
patch2 = mpatches.Patch(color='#0000FF', label='orange')
patch3 = mpatches.Patch(color='#AFAFAF', label='lemon')
plt.legend(handles=[patch0, patch1, patch2, patch3])
plt.xlabel('height (cm)')
plt.ylabel('width (cm)')
plt.show()
def plot_two_class_knn(X, y, n_neighbors, weights, X_test, y_test):
X_mat = X
y_mat = y
# Create color maps
cmap_light = ListedColormap(['#FFFFAA', '#AAFFAA', '#AAAAFF','#EFEFEF'])
cmap_bold = ListedColormap(['#FFFF00', '#00FF00', '#0000FF','#000000'])
clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
clf.fit(X_mat, y_mat)
# Plot the decision boundary by assigning a color in the color map
# to each mesh point.
mesh_step_size = .01 # step size in the mesh
plot_symbol_size = 50
x_min, x_max = X_mat[:, 0].min() - 1, X_mat[:, 0].max() + 1
y_min, y_max = X_mat[:, 1].min() - 1, X_mat[:, 1].max() + 1
xx, yy = numpy.meshgrid(numpy.arange(x_min, x_max, mesh_step_size),
numpy.arange(y_min, y_max, mesh_step_size))
Z = clf.predict(numpy.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
# Plot training points
plt.scatter(X_mat[:, 0], X_mat[:, 1], s=plot_symbol_size, c=y, cmap=cmap_bold, edgecolor = 'black')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
title = "Neighbors = {}".format(n_neighbors)
if (X_test is not None):
train_score = clf.score(X_mat, y_mat)
test_score = clf.score(X_test, y_test)
title = title + "\nTrain score = {:.2f}, Test score = {:.2f}".format(train_score, test_score)
patch0 = mpatches.Patch(color='#FFFF00', label='class 0')
patch1 = mpatches.Patch(color='#000000', label='class 1')
plt.legend(handles=[patch0, patch1])
plt.xlabel('Feature 0')
plt.ylabel('Feature 1')
plt.title(title)
plt.show()
Upvotes: 0
Reputation: 51
There is no such module. You can use below code to get that data visualized -
import matplotlib.cm as cm
from matplotlib.colors import ListedColormap, BoundaryNorm
import matplotlib.patches as mpatches
import matplotlib.patches as mpatches
X = df[['mass', 'width', 'height', 'color_score']]
y = df['fruit_label']
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
def plot_fruit_knn(X, y, n_neighbors, weights):
X_mat = X[['height', 'width']].values
y_mat = y.values
# Create color maps
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF','#AFAFAF'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF','#AFAFAF'])
clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
clf.fit(X_mat, y_mat)
# Plot the decision boundary by assigning a color in the color map
# to each mesh point.
mesh_step_size = .01 # step size in the mesh
plot_symbol_size = 50
x_min, x_max = X_mat[:, 0].min() - 1, X_mat[:, 0].max() + 1
y_min, y_max = X_mat[:, 1].min() - 1, X_mat[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, mesh_step_size),
np.arange(y_min, y_max, mesh_step_size))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)
# Plot training points
plt.scatter(X_mat[:, 0], X_mat[:, 1], s=plot_symbol_size, c=y, cmap=cmap_bold, edgecolor = 'black')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
patch0 = mpatches.Patch(color='#FF0000', label='apple')
patch1 = mpatches.Patch(color='#00FF00', label='mandarin')
patch2 = mpatches.Patch(color='#0000FF', label='orange')
patch3 = mpatches.Patch(color='#AFAFAF', label='lemon')
plt.legend(handles=[patch0, patch1, patch2, patch3])
plt.xlabel('height (cm)')
plt.ylabel('width (cm)')
#plt.title("4-Class classification (k = %i, weights = '%s')" % (n_neighbors, weights))
plt.show()
plot_fruit_knn(X_train, y_train, 5, 'uniform')
This will give output figure as shown below
Upvotes: 5
Reputation: 176
Instead, you can put the file adspy_shared_utilities.py
directly in the Scripts or in the Jupyter notebook directory. This will directly import adspy without any errors.
Upvotes: 2
Reputation: 106
there is no module named adspy_shared_utilities,but this is some script kept with the course material.You should just keep the script in the same directory in which you keep your python files.
Upvotes: 8