Reputation: 2797
I am creating a neural network in tensorflow and I have created the placeholders like this:
input_tensor = tf.placeholder(tf.float32, shape = (None,n_input), name = "input_tensor")
output_tensor = tf.placeholder(tf.float32, shape = (None,n_classes), name = "output_tensor")
During the training process, I was getting the following error:
Traceback (most recent call last):
File "try.py", line 150, in <module>
sess.run(optimizer, feed_dict={X: x_train[i: i + 1], Y: y_train[i: i + 1]})
TypeError: unhashable type: 'numpy.ndarray'
I identified that is because of the different datatypes of my x_train and y_train to the datatypes of the placeholders.
My x_train looks somewhat like this:
array([[array([[ 1., 0., 0.],
[ 0., 1., 0.]])],
[array([[ 0., 1., 0.],
[ 1., 0., 0.]])],
[array([[ 0., 0., 1.],
[ 0., 1., 0.]])]], dtype=object)
It was initially a dataframe like this:
0 [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]
1 [[0.0, 1.0, 0.0], [1.0, 0.0, 0.0]]
2 [[0.0, 0.0, 1.0], [0.0, 1.0, 0.0]]
I did x_train = train_x.values
to get the numpy array
And y_train looks this:
array([[ 1., 0., 0.],
[ 0., 1., 0.],
[ 0., 0., 1.]])
x_train has dtype object and y_train has dtype float64.
What I want to know is that how I can change the datatypes of my training data so that it can work well with the tensorflow placeholders. Or please suggest if I am missing something.
Upvotes: 1
Views: 2557
Reputation: 494
Your x_train
is a nested object containing arrays, so you have to unpack it and reshape it. Here's a general purpose hack:
def unpack(a, aggregate=[]):
for x in a:
if type(x) is float:
aggregate.append(x)
else:
unpack(x, aggregate=aggregate)
return np.array(aggregate)
x_train = unpack(x_train.values).reshape(x_train.shape[0],-1)
Once you've got a dense array (y_train
is already dense), you can use a function like the following:
def cast(placeholder, array):
dtype = placeholder.dtype.as_numpy_dtype
return array.astype(dtype)
x_train, y_train = cast(X,x_train), cast(Y,y_train)
Upvotes: 0
Reputation: 6034
It is little hard to guess what shape you want your data to be, but I am guessing one of the two combinations which you might be looking for. I will also try to simulate your data in Pandas dataframe.
df = pd.DataFrame([[[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]],
[[[0.0, 1.0, 0.0], [1.0, 0.0, 0.0]]],
[[[0.0, 0.0, 1.0], [0.0, 1.0, 0.0]]]], columns = ['Mydata'])
print(df)
x = df.Mydata.values
print(x.shape)
print(x)
print(x.dtype)
Output:
Mydata
0 [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]]
1 [[0.0, 1.0, 0.0], [1.0, 0.0, 0.0]]
2 [[0.0, 0.0, 1.0], [0.0, 1.0, 0.0]]
(3,)
[list([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]])
list([[0.0, 1.0, 0.0], [1.0, 0.0, 0.0]])
list([[0.0, 0.0, 1.0], [0.0, 1.0, 0.0]])]
object
Combination 1
y = [item for sub_list in x for item in sub_list]
y = np.array(y, dtype = np.float32)
print(y.dtype, y.shape)
print(y)
Output:
float32 (6, 3)
[[ 1. 0. 0.]
[ 0. 1. 0.]
[ 0. 1. 0.]
[ 1. 0. 0.]
[ 0. 0. 1.]
[ 0. 1. 0.]]
Combination 2
y = [sub_list for sub_list in x]
y = np.array(y, dtype = np.float32)
print(y.dtype, y.shape)
print(y)
Output:
float32 (3, 2, 3)
[[[ 1. 0. 0.]
[ 0. 1. 0.]]
[[ 0. 1. 0.]
[ 1. 0. 0.]]
[[ 0. 0. 1.]
[ 0. 1. 0.]]]
Upvotes: 0