Reputation: 33
mutate_at() shows an evaluation error when used with group_by() and when imputing a numerical vector for column position as the first (.vars) argument.
R
3.4.2 and dplyr
0.7.4 versionR
3.3.2 and dplyr
0.5.0 Example:
# Create example dataframe
Id <- c('10_1', '10_2', '11_1', '11_2', '11_3', '12_1')
Month <- c(2, 3, 4, 6, 7, 8)
RWA <- c(0, 0, 0, 1.579, NA, 0.379)
dftest = data.frame(Id, Month, RWA)
# Define column to fill NAs
nacol = c('RWA')
# Fill NAs with last period
dftest_2 <- dftest %>%
group_by(Id) %>%
mutate_at(which(names(dftest) %in% nacol),
funs(ifelse(is.na(.),0,.)))
Error in mutate_impl(.data, dots) :
Evaluation error: object 'NA' not found.
More sensible example demonstrating issue:
# Create example dataframe
Id <- c('10_1', '10_2', '11_1', '11_3', '11_3', '12_1')
Month <- c(2, 3, 4, 6, 7, 8)
RWA <- c(0, 0, 0, 1.579, NA, 0.379)
dftest = data.frame(Id, Month, RWA)
# Define column to fill NAs
nacol = c('RWA')
# Fill NAs with last period
dftest_2 <- dftest %>%
group_by(Id) %>%
mutate_at(which(names(dftest) %in% nacol),
funs(na.locf(., na.rm=F)))
Upvotes: 3
Views: 1384
Reputation: 887901
The reason we are getting NA values is that the output we get from which
is 3, but we grouped by 'Id' and so there are only 2 columns after that.
dftest %>%
group_by(Id) %>%
mutate_at(which(names(dftest) %in% nacol)-1, funs(ifelse(is.na(.),0,.)))
# A tibble: 6 x 3
# Groups: Id [6]
# Id Month RWA
# <fctr> <dbl> <dbl>
#1 10_1 2 0.000
#2 10_2 3 0.000
#3 11_1 4 0.000
#4 11_2 6 1.579
#5 11_3 7 0.000
#6 12_1 8 0.379
The group_by
is part is not needed here as we are changing NA values in other columns to 0
dftest %>%
mutate_at(which(names(dftest) %in% nacol), funs(ifelse(is.na(.),0,.)))
It could be a bug and using the position based approach is sometimes risky. Better option would be to go with names
dftest %>%
group_by(Id) %>%
mutate_at(intersect(names(.), nacol), funs(replace(., is.na(.), 0)))
NOTE: In all these cases, the group_by
is not needed
Another option is replace_na
from tidyr
dftest %>%
tidyr::replace_na(as.list(setNames(0, nacol)))
Upvotes: 3