Reputation: 1985
So my dataframe looks like this:
date site country score
0 2018-01-01 google us 100
1 2018-01-01 google ch 50
2 2018-01-02 google us 70
3 2018-01-03 google us 60
4 2018-01-02 google ch 10
5 2018-01-01 fb us 50
6 2018-01-02 fb us 55
7 2018-01-03 fb us 100
8 2018-01-01 fb es 100
9 2018-01-02 fb gb 100
Each site
has a different score depending on the country
. I'm trying to find the 1/3/5-day difference of score
s for each site
/country
combination.
Output should be:
date site country score diff
8 2018-01-01 fb es 100 0.0
9 2018-01-02 fb gb 100 0.0
5 2018-01-01 fb us 50 0.0
6 2018-01-02 fb us 55 5.0
7 2018-01-03 fb us 100 45.0
1 2018-01-01 google ch 50 0.0
4 2018-01-02 google ch 10 -40.0
0 2018-01-01 google us 100 0.0
2 2018-01-02 google us 70 -30.0
3 2018-01-03 google us 60 -10.0
I first tried sorting by site
/country
/date
, then grouping by site
and country
but I'm not able to wrap my head around getting a difference from a grouped object.
Upvotes: 40
Views: 51712
Reputation: 17884
You can shift and substract grouped values:
df.sort_values(['site', 'country', 'date'], inplace=True)
df['diff'] = df['score'] - df.groupby(['site', 'country'])['score'].shift()
Result:
date site country score diff
8 2018-01-01 fb es 100 NaN
9 2018-01-02 fb gb 100 NaN
5 2018-01-01 fb us 50 NaN
6 2018-01-02 fb us 55 5.0
7 2018-01-03 fb us 100 45.0
1 2018-01-01 google ch 50 NaN
4 2018-01-02 google ch 10 -40.0
0 2018-01-01 google us 100 NaN
2 2018-01-02 google us 70 -30.0
3 2018-01-03 google us 60 -10.0
To fill NaN
with 0
use df['diff'].fillna(0, inplace=True)
.
Upvotes: 2
Reputation:
First, sort the DataFrame and then all you need is groupby.diff()
:
df = df.sort_values(by=['site', 'country', 'date'])
df['diff'] = df.groupby(['site', 'country'])['score'].diff().fillna(0)
df
Out:
date site country score diff
8 2018-01-01 fb es 100 0.0
9 2018-01-02 fb gb 100 0.0
5 2018-01-01 fb us 50 0.0
6 2018-01-02 fb us 55 5.0
7 2018-01-03 fb us 100 45.0
1 2018-01-01 google ch 50 0.0
4 2018-01-02 google ch 10 -40.0
0 2018-01-01 google us 100 0.0
2 2018-01-02 google us 70 -30.0
3 2018-01-03 google us 60 -10.0
sort_values
doesn't support arbitrary orderings. If you need to sort arbitrarily (google before fb for example) you need to store them in a collection and set your column as categorical. Then sort_values will respect the ordering you provided there.
Upvotes: 78