Reputation: 147
How to find and remove rows from DataFrame with values in a specific range, for example dates greater than '2017-03-02' and smaller than '2017-03-05'
import pandas as pd
d_index = pd.date_range('2018-01-01', '2018-01-06')
d_values = pd.date_range('2017-03-01', '2017-03-06')
s = pd.Series(d_values)
s = s.rename('values')
df = pd.DataFrame(s)
df = df.set_index(d_index)
# remove rows with specific values in 'value' column
In example above I have d_values ordered from earliest to the latest date so in this case slicing dataframe by index could do the work. But I am looking for solution that would work also when d_values contain not ordered random date values. Is there any way to do it in pandas?
Upvotes: 2
Views: 4489
Reputation: 210952
first let's shuffle your DF:
In [65]: df = df.sample(frac=1)
In [66]: df
Out[66]:
values
2018-01-03 2017-03-03
2018-01-04 2017-03-04
2018-01-01 2017-03-01
2018-01-06 2017-03-06
2018-01-05 2017-03-05
2018-01-02 2017-03-02
you can use DataFrame.eval method (thanks @ cᴏʟᴅsᴘᴇᴇᴅ for the correction!):
In [70]: df[~df.eval("'2017-03-02' < values < '2017-03-05'")]
Out[70]:
values
2018-01-01 2017-03-01
2018-01-06 2017-03-06
2018-01-05 2017-03-05
2018-01-02 2017-03-02
In [300]: df.query("not ('2017-03-02' < values < '2017-03-05')")
Out[300]:
values
2018-01-01 2017-03-01
2018-01-06 2017-03-06
2018-01-05 2017-03-05
2018-01-02 2017-03-02
Upvotes: 2
Reputation: 403012
Option 1
pd.Series.between
seems suited for this task.
df[~df['values'].between('2017-03-02', '2017-03-05', inclusive=False)]
values
2018-01-01 2017-03-01
2018-01-02 2017-03-02
2018-01-05 2017-03-05
2018-01-06 2017-03-06
Details
between
identifies all items within the range -
m = df['values'].between('2017-03-02', '2017-03-05', inclusive=False)
m
2018-01-01 False
2018-01-02 False
2018-01-03 True
2018-01-04 True
2018-01-05 False
2018-01-06 False
Freq: D, Name: values, dtype: bool
Use the mask to filter on df
-
df = df[~m]
Option 2
Alternatively, with the good ol' old logical OR -
df[~(df['values'].gt('2017-03-02') & df['values'].lt('2017-03-05'))]
values
2018-01-01 2017-03-01
2018-01-02 2017-03-02
2018-01-05 2017-03-05
2018-01-06 2017-03-06
Note that both options work with datetime objects as well as string date columns (in which case, the comparison is lexicographic).
Upvotes: 5