Reputation: 1539
I have looked this up and I think what I have should work, but it isn't. The first condition (>= 80) is being evaluated but the second (<= 100) is not.
I want every row in which ANY column value is between 80 and 100 inclusive, BUT, if any column value is greater than 100 then exclude it.
I should only see the rows AP-2, AP-8 and AP-9.
import pandas as pd
df = pd.DataFrame({'AP-1': [30, 32, 34, 31, 33, 35, 36, 38, 37],
'AP-2': [30, 32, 34, 80, 33, 35, 36, 38, 37],
'AP-3': [30, 32, 81, 31, 33, 101, 36, 38, 37],
'AP-4': [30, 32, 34, 95, 33, 35, 103, 38, 121],
'AP-5': [30, 32, 34, 31, 33, 144, 36, 38, 37],
'AP-6': [30, 32, 34, 31, 33, 35, 36, 110, 37],
'AP-7': [30, 87, 34, 31, 111, 35, 36, 38, 122],
'AP-8': [30, 32, 99, 31, 33, 35, 36, 38, 37],
'AP-9': [30, 32, 34, 31, 33, 99, 88, 38, 37]}, index=['1', '2', '3', '4', '5', '6', '7', '8', '9'])
df1 = df.transpose()
print(df1)
print()
df2 = df1[(df1.values >= 80).any(1) & (df1.values <= 100).any(1)]
print(df2)
df2 is coming out as:
1 2 3 4 5 6 7 8 9
AP-2 30 32 34 80 33 35 36 38 37
AP-3 30 32 81 31 33 101 36 38 37
AP-4 30 32 34 95 33 35 103 38 121
AP-5 30 32 34 31 33 144 36 38 37
AP-6 30 32 34 31 33 35 36 110 37
AP-7 30 87 34 31 111 35 36 38 122
AP-8 30 32 99 31 33 35 36 38 37
AP-9 30 32 34 31 33 99 88 38 37
Upvotes: 2
Views: 4093
Reputation: 18916
Here is another idea, separate the masks and use & to join:
import pandas as pd
df = pd.DataFrame({'AP-1': [30, 32, 34, 31, 33, 35, 36, 38, 37],
'AP-2': [30, 32, 34, 80, 33, 35, 36, 38, 37],
'AP-3': [30, 32, 81, 31, 33, 101, 36, 38, 37],
'AP-4': [30, 32, 34, 95, 33, 35, 103, 38, 121],
'AP-5': [30, 32, 34, 31, 33, 144, 36, 38, 37],
'AP-6': [30, 32, 34, 31, 33, 35, 36, 110, 37],
'AP-7': [30, 87, 34, 31, 111, 35, 36, 38, 122],
'AP-8': [30, 32, 99, 31, 33, 35, 36, 38, 37],
'AP-9': [30, 32, 34, 31, 33, 99, 88, 38, 37]},
index=['1', '2', '3', '4', '5', '6', '7', '8', '9'])
# This is the actual frame you want
df = df.transpose()
m1 = (df >= 80).any(1)
m2 = ~(df >= 100).any(1) #<-- Invert the statement with ~
df2 = df.loc[m1&m2]
print(df2)
Prints:
1 2 3 4 5 6 7 8 9
AP-2 30 32 34 80 33 35 36 38 37
AP-8 30 32 99 31 33 35 36 38 37
AP-9 30 32 34 31 33 99 88 38 37
Upvotes: 4