Reputation: 111
I am analyzing the ratio of (biomass of one part of a plant community) vs. (total plant community biomass) across different treatments in time (i.e. repeated measures) in R. Hence, it seems natural to use beta regression with a mixed component (available with the glmmTMB
package) in order to account for repeated measures.
My problem is about computing post hoc comparisons across my treatments with the function lsmeans
from the lsmeans package. glmmTMB objects are not handled by the lsmeans function so Ben Bolker on recommended to add the following code before loading the packages {glmmTMB} and {lsmeans}:
recover.data.glmmTMB <- function(object, ...) {
fcall <- getCall(object)
recover.data(fcall,delete.response(terms(object)),
attr(model.frame(object),"na.action"), ...)}
lsm.basis.glmmTMB <- function (object, trms, xlev, grid, vcov.,
mode = "asymptotic", component="cond", ...) {
if (mode != "asymptotic") stop("only asymptotic mode is available")
if (component != "cond") stop("only tested for conditional component")
if (missing(vcov.))
V <- as.matrix(vcov(object)[[component]])
else V <- as.matrix(.my.vcov(object, vcov.))
dfargs = misc = list()
if (mode == "asymptotic") {
dffun = function(k, dfargs) NA
}
## use this? misc = .std.link.labels(family(object), misc)
contrasts = attr(model.matrix(object), "contrasts")
m = model.frame(trms, grid, na.action = na.pass, xlev = xlev)
X = model.matrix(trms, m, contrasts.arg = contrasts)
bhat = fixef(object)[[component]]
if (length(bhat) < ncol(X)) {
kept = match(names(bhat), dimnames(X)[[2]])
bhat = NA * X[1, ]
bhat[kept] = fixef(object)[[component]]
modmat = model.matrix(trms, model.frame(object), contrasts.arg = contrasts)
nbasis = estimability::nonest.basis(modmat)
}
else nbasis = estimability::all.estble
list(X = X, bhat = bhat, nbasis = nbasis, V = V, dffun = dffun,
dfargs = dfargs, misc = misc)
}
Here is my code and data:
trt=c(rep("T5",13),rep("T4",13),
rep("T3",13),rep("T1",13),rep("T2",13),rep("T1",13),
rep("T2",13),rep("T3",13),rep("T5",13),rep("T4",13))
year=rep(2005:2017,10)
plot=rep(LETTERS[1:10],each=13)
ratio=c(0.0046856237844411,0.00100861922394448,0.032516291436091,0.0136507743972955,0.0940240065096705,0.0141337428305094,0.00746709315018945,0.437009092691189,0.0708021091805216,0.0327952505849285,0.0192685194751524,0.0914696394299481,0.00281889216102303,0.0111928453399615,0.00188119596836005,NA,0.000874623692966351,0.0181192859074754,0.0176635391424644,0.00922358069727823,0.0525280029990213,0.0975006760149882,0.124726170684951,0.0187132600944396,0.00672592365451266,0.106399234215126,0.0401776844073239,0.00015382736648373,0.000293356424756535,0.000923659501144292,0.000897412901472504,0.00315930225856196,0.0636501228611642,0.0129422445492391,0.0143526630252398,0.0136775931834926,0.00159292971508751,0.0000322313783211749,0.00125352390811532,0.0000288862579879126,0.00590690336494395,0.000417043974238875,0.0000695808216192379,0.001301299696752,0.000209355138230326,0.000153151660178623,0.0000646279598274632,0.000596704590065324,9.52943306579156E-06,0.000113476446629278,0.00825405312309618,0.0001025984082064,0.000887617767039489,0.00273668802742924,0.00469409165130462,0.00312377000134233,0.0015579322817235,0.0582615988387306,0.00146933878743163,0.0405139497779372,0.259097955479886,0.00783997376383192,0.110638003652979,0.00454029511918275,0.00728290246595241,0.00104674197030363,0.00550563937846687,0.000121380392484705,0.000831904606687671,0.00475778829159394,0.000402799910756391,0.00259524300745195,0.000210249875492504,0.00550104485802363,0.000272849546913495,0.0025389089622392,0.00129370075116459,0.00132810234020792,0.00523285954007915,0.00506230599388357,0.00774104695265855,0.00098348404576587,0.174079173227248,0.0153486840317039,0.351820365452281,0.00347674458928481,0.147309225196026,0.0418825705903947,0.00591271021100856,0.0207139520537443,0.0563647804012055,0.000560012457272534,0.00191564842393647,0.01493480083524,0.00353400674061077,0.00771828473058641,0.000202009136938048,0.112695841130448,0.00761492172670762,0.038797330459115,0.217367765362878,0.0680958660605668,0.0100870294641921,0.00493875324236991,0.00136539944656238,0.00264262100866192,0.0847732305020654,0.00460985241335143,0.235802638543116,0.16336020383325,0.225776236687456,0.0204568107372349,0.0455390585228863,0.130969863489582,0.00679523322812889,0.0172325334280024,0.00299970176999806,0.00179347656925317,0.00721658257996989,0.00822443690003783,0.00913096724026346,0.0105920192618379,0.0158013204589482,0.00388803567197835,0.00366268607026078,0.0545418725650633,0.00761485067129418,0.00867583194858734,0.0188232707241144,0.018652666214789)
dat=data.frame(trt,year,plot,ratio)
require(glmmTMB)
require(lsmeans)
mod=glmmTMB(ratio~trt*scale(year)+(1|plot),family=list(family="beta",link="logit"),data=dat)
summary(mod)
ls=lsmeans(mod,pairwise~trt)`
Finally, I get the following error message that I've never encountered and on which I could find no information:
In model.matrix.default(trms, m, contrasts.arg = contrasts) : variable 'plot' is absent, its contrast will be ignored
Could anyone shine their light? Thanks!
Upvotes: 0
Views: 652
Reputation: 226332
This is not an error message, it's a (harmless) warning message. It occurs because the hacked-up method I wrote doesn't exclude factor variables that are only used in the random effects. You should worry more about this output:
NOTE: Results may be misleading due to involvement in interactions
which is warning you that you are evaluating main effects in a model that contains interactions; you have to think about this carefully to make sure you're doing it right.
Upvotes: 2