Reputation: 2135
I have a series with some strings in a pandas dataframe. I would like to search for the existence of that string within an adjacent column.
In the below example I would like to search for if the string in 'choice' series is contained within the 'fruit' series, returning either true (1) or false (0) in a new column 'choice_match'.
Example DataFrame:
import pandas as pd
d = {'ID': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'fruit': [
'apple, banana', 'apple', 'apple', 'pineapple', 'apple, pineapple', 'orange', 'apple, orange', 'orange', 'banana', 'apple, peach'],
'choice': ['orange', 'orange', 'apple', 'pineapple', 'apple', 'orange', 'orange', 'orange', 'banana', 'banana']}
df = pd.DataFrame(data=d)
Desired DataFrame:
import pandas as pd
d = {'ID': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'fruit': [
'apple, banana', 'apple', 'apple', 'pineapple', 'apple, pineapple', 'orange', 'apple, orange', 'orange', 'banana', 'apple, peach'],
'choice': ['orange', 'orange', 'apple', 'pineapple', 'apple', 'orange', 'orange', 'orange', 'banana', 'banana'],
'choice_match': [0, 0, 1, 1, 1, 1, 1, 1, 1, 0]}
df = pd.DataFrame(data=d)
Upvotes: 4
Views: 504
Reputation: 294258
Option 1
Use Numpy's find
When find
doesn't find the value, it returns -1
from numpy.core.defchararray import find
choice = df.choice.values.astype(str)
fruit = df.fruit.values.astype(str)
df.assign(choice_match=(find(fruit, choice) > -1).astype(np.uint))
ID choice fruit choice_match
0 1 orange apple, banana 0
1 2 orange apple 0
2 3 apple apple 1
3 4 pineapple pineapple 1
4 5 apple apple, pineapple 1
5 6 orange orange 1
6 7 orange apple, orange 1
7 8 orange orange 1
8 9 banana banana 1
9 10 banana apple, peach 0
Option 2
Set logic
With set
s <
is strict subset and <=
is subset. Make yourself some pd.Series
of set
s and use <=
to find out if one column's sets are subsets of the other column's sets.
choice = df.choice.apply(lambda x: set([x]))
fruit = df.fruit.str.split(', ').apply(set)
df.assign(choice_match=(choice <= fruit).astype(np.uint))
ID choice fruit choice_match
0 1 orange apple, banana 0
1 2 orange apple 0
2 3 apple apple 1
3 4 pineapple pineapple 1
4 5 apple apple, pineapple 1
5 6 orange orange 1
6 7 orange apple, orange 1
7 8 orange orange 1
8 9 banana banana 1
9 10 banana apple, peach 0
Option 3
Inspired by @Wen's answer
Using get_dummies
and max
c = pd.get_dummies(df.choice)
f = df.fruit.str.get_dummies(', ')
df.assign(choice_match=pd.DataFrame.mul(*c.align(f, 'inner')).max(1))
ID choice fruit choice_match
0 1 orange apple, banana 0
1 2 orange apple 0
2 3 apple apple 1
3 4 pineapple pineapple 1
4 5 apple apple, pineapple 1
5 6 orange orange 1
6 7 orange apple, orange 1
7 8 orange orange 1
8 9 banana banana 1
9 10 banana apple, peach 0
Upvotes: 4
Reputation: 323236
Ummm find a interesting way get_dummies
(df.fruit.str.replace(' ','').str.get_dummies(',')+df.choice.str.get_dummies()).gt(1).any(1)
Out[726]:
0 False
1 False
2 True
3 True
4 True
5 True
6 True
7 True
8 True
9 False
dtype: bool
After assign it back
df['New']=(df.fruit.str.replace(' ','').str.get_dummies(',')+df.choice.str.get_dummies()).gt(1).any(1).astype(int)
df
Out[728]:
ID choice fruit New
0 1 orange apple, banana 0
1 2 orange apple 0
2 3 apple apple 1
3 4 pineapple pineapple 1
4 5 apple apple, pineapple 1
5 6 orange orange 1
6 7 orange apple, orange 1
7 8 orange orange 1
8 9 banana banana 1
9 10 banana apple, peach 0
Upvotes: 3
Reputation: 210842
In [75]: df['choice_match'] = (df['fruit']
.str.split(',\s*', expand=True)
.eq(df['choice'], axis=0)
.any(1).astype(np.int8))
In [76]: df
Out[76]:
ID choice fruit choice_match
0 1 orange apple, banana 0
1 2 orange apple 0
2 3 apple apple 1
3 4 pineapple pineapple 1
4 5 apple apple, pineapple 1
5 6 orange orange 1
6 7 orange apple, orange 1
7 8 orange orange 1
8 9 banana banana 1
9 10 banana apple, peach 0
Step by step:
In [78]: df['fruit'].str.split(',\s*', expand=True)
Out[78]:
0 1
0 apple banana
1 apple None
2 apple None
3 pineapple None
4 apple pineapple
5 orange None
6 apple orange
7 orange None
8 banana None
9 apple peach
In [79]: df['fruit'].str.split(',\s*', expand=True).eq(df['choice'], axis=0)
Out[79]:
0 1
0 False False
1 False False
2 True False
3 True False
4 True False
5 True False
6 False True
7 True False
8 True False
9 False False
In [80]: df['fruit'].str.split(',\s*', expand=True).eq(df['choice'], axis=0).any(1)
Out[80]:
0 False
1 False
2 True
3 True
4 True
5 True
6 True
7 True
8 True
9 False
dtype: bool
In [81]: df['fruit'].str.split(',\s*', expand=True).eq(df['choice'], axis=0).any(1).astype(np.int8)
Out[81]:
0 0
1 0
2 1
3 1
4 1
5 1
6 1
7 1
8 1
9 0
dtype: int8
Upvotes: 5
Reputation: 164673
Here is one way:
df['choice_match'] = df.apply(lambda row: row['choice'] in row['fruit'].split(','),\
axis=1).astype(int)
Explanation
df.apply
with axis=1
cycles through each row and applies logic; it accepts anonymous lambda
functions.row['fruit'].split(',')
creates a list from the fruit
column. This is necessary so, for example, apple
is not considered in pineapple
.astype(int)
is necessary to convert Boolean values to integers for display purposes.Upvotes: 5