Reputation: 1460
I have below DataFrame's and achieved the desired output in python. But I wanted to convert the same into pyspark.
d = {'user': ['A', 'A', 'B','B','C', 'D', 'C', 'E', 'D', 'E', 'F', 'F'], 'songs' : [11,22,99,11,11,44,66,66,33,55,11,77]}
data = pd.DataFrame(data = d)
e = {'user': ['A', 'B','C', 'D', 'E', 'F','A'], 'cluster': [1,2,3,1,2,3,2]}
clus = pd.DataFrame(data= e)
Desired output: I wanted to achieve all the songs which were not listened by the user of a particular cluster. A belongs to cluster 1, and cluster 1 has songs [11,22,33,44] so A hasnt listened to [33,44]
so I achieved that using the below python code.
user
A [33, 44]
B [55, 66]
C [77]
D [11, 22]
E [11, 99]
F [66]
PYTHON CODE:
df = pd.merge(data, clus, on='user', how='left').drop_duplicates(['user','movie'])
df1 = (df.groupby(['cluster']).apply(lambda x: x.pivot('user','movie','cluster').isnull())
.fillna(False)
.reset_index(level=0, drop=True)
.sort_index())
s = np.where(df1, ['{}'.format(x) for x in df1.columns], '')
#remove empty values
s1 = pd.Series([''.join(x).strip(', ') for x in s], index=df1.index)
print (s1)
Hot to achieve the same in pyspark distributed coding ?
Upvotes: 2
Views: 506
Reputation: 2545
There could be a better solution than this, but it works.
Assuming that each user belongs to only one cluster,
import pyspark.sql.functions as F
from pyspark.sql.types import *
d = zip(['A', 'A', 'B','B','C', 'D', 'C', 'E', 'D', 'E', 'F', 'F'],[11,22,99,11,11,44,66,66,33,55,11,77])
data = sql.createDataFrame(d).toDF('user','songs')
This gives,
+----+-----+
|user|songs|
+----+-----+
| A| 11|
| A| 22|
| B| 99|
| B| 11|
| C| 11|
| D| 44|
| C| 66|
| E| 66|
| D| 33|
| E| 55|
| F| 11|
| F| 77|
+----+-----+
Creating clusters assuming each user belongs only to one cluster,
c = zip(['A', 'B','C', 'D', 'E', 'F'],[1,2,3,1,2,3])
clus = sql.createDataFrame(c).toDF('user','cluster')
clus.show()
+----+-------+
|user|cluster|
+----+-------+
| A| 1|
| B| 2|
| C| 3|
| D| 1|
| E| 2|
| F| 3|
+----+-------+
Now, we get all songs heard by a user along with their cluster,
all_combine = data.groupBy('user').agg(F.collect_list('songs').alias('songs'))\
.join(clus, data.user==clus.user).select(data['user'],'songs','cluster')
all_combine.show()
+----+--------+-------+
|user| songs|cluster|
+----+--------+-------+
| F|[11, 77]| 3|
| E|[66, 55]| 2|
| B|[99, 11]| 2|
| D|[44, 33]| 1|
| C|[11, 66]| 3|
| A|[11, 22]| 1|
+----+--------+-------+
Finally, calculating all songs heard in a cluster and subsequently all songs not heard by a user in that cluster,
not_listened = F.udf(lambda song,all_: list(set(all_) - set(song)) , ArrayType(IntegerType()))
grouped_clusters = data.join(clus, data.user==clus.user).select(data['user'],'songs','cluster')\
.groupby('cluster').agg(F.collect_list('songs').alias('all_songs'))\
.join(all_combine, ['cluster']).select('user', all_combine['cluster'], 'songs', 'all_songs')\
.select('user', not_listened(F.col('songs'), F.col('all_songs')).alias('not_listened'))
grouped_clusters.show()
We get output as,
+----+------------+
|user|not_listened|
+----+------------+
| D| [11, 22]|
| A| [33, 44]|
| F| [66]|
| C| [77]|
| E| [99, 11]|
| B| [66, 55]|
+----+------------+
Upvotes: 1