Reputation: 2201
I have a OP : {'2017-05-06': [3, 7, 8],'2017-05-07': [3, 9, 10],'2017-05-08': [4]}
from the OP I just want another OP :
{'2017-05-06': [15, 11, 10],'2017-05-07': [19, 13, 12],'2017-05-08': [4]}
which means:
Ncleand is 2017-05-06
element total is 18
so '2017-05-06': [3 -18, 7-18, 8-18] = '2017-05-06': [15, 11, 10]
likewise all elements data.
So final output is {'2017-05-06': [15, 11, 10],'2017-05-07': [19, 13, 12],'2017-05-08': [4]}
How to do this?
Note : I am using python 3.6.2 and pandas 0.22.0
code so far :
import pandas as pd
dfs = pd.read_excel('ff2.xlsx', sheet_name=None)
dfs1 = {i:x.groupby(pd.to_datetime(x['date']).dt.strftime('%Y-%m-%d'))['duration'].sum() for i, x in dfs.items()}
d = pd.concat(dfs1).groupby(level=1).apply(list).to_dict()
actuald = pd.concat(dfs1).div(80).astype(int)
sum1 = actuald.groupby(level=1).transform('sum')
m = actuald.groupby(level=1).transform('size') > 1
cleand = sum1.sub(actuald).where(m, actuald).groupby(level=1).apply(list).to_dict()
print (cleand)
From the cleand I want to do this?
Upvotes: 1
Views: 108
Reputation: 8464
In a compact (but somehow inefficient) way:
>>> op = {'2017-05-06': [3, 7, 8],'2017-05-07': [3, 9, 10],'2017-05-08': [4]}
>>> { x:[sum(y)-i for i in y] if len(y)>1 else y for x,y in op.items() }
#output:
{'2017-05-06': [15, 11, 10], '2017-05-07': [19, 13, 12], '2017-05-08': [4]}
Upvotes: 2
Reputation: 788
def get_list_manipulation(list_):
subtraction = list_
if len(list_) != 1:
total = sum(list_)
subtraction = [total-val for val in list_]
return subtraction
for key, values in data.items():
data[key] = get_list_manipulation(values)
>>>{'2017-05-06': [15, 11, 10], '2017-05-07': [19, 13, 12], '2017-05-08': [4]}
Upvotes: 2