Reputation: 3195
In my dataset, i must delete outliers for each group separately. Here my dataset
vpg=structure(list(customer = c(1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L,
1L, 1L, 1L, 2L, 2L, 2L, 2L), code = c(2L, 2L, 3L, 3L, 4L, 4L,
5L, 5L, 2L, 2L, 3L, 3L, 4L, 4L, 5L, 5L), year = c(2017L, 2017L,
2017L, 2017L, 2017L, 2017L, 2017L, 2017L, 2018L, 2018L, 2018L,
2018L, 2018L, 2018L, 2018L, 2018L), stuff = c(10L, 20L, 30L,
40L, 50L, 60L, 70L, 80L, 10L, 20L, 30L, 40L, 50L, 60L, 70L, 80L
), action = c(0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 1L,
0L, 1L, 0L, 1L)), .Names = c("customer", "code", "year", "stuff",
"action"), class = "data.frame", row.names = c(NA, -16L))
I must delete outlier from stuff variable, but separately by group customer+code+year
i found this pretty function
remove_outliers <- function(x, na.rm = TRUE, ...) {
qnt <- quantile(x, probs=c(.25, .75), na.rm = na.rm, ...)
H <- 1.5 * IQR(x, na.rm = na.rm)
y <- x
y[x < (qnt[1] - H)] <- NA
y[x > (qnt[2] + H)] <- NA
y
}
new <- remove_outliers(vpg$stuff)
vpg=cbind(new,vpg)
View(vpg)
But it works for all groups.
How use this function to delete outlier for each group and get clear dataset for next working ?
Note , in this dataset, there is variable action(it tales value 0 and 1). It is not group variable, but outliers must be delete only for ZERO(0)
categories of action variable.
Upvotes: 3
Views: 10895
Reputation: 21
Using library(tidyverse)
, you can define the function
add_new_column <- function(df) {
new <- remove_outliers(df$stuff)
return(cbind(new,df))
}
and then apply it group-wise on your whole dataframe:
vpg %>%
group_by(customer, code, year) %>%
nest() %>%
mutate(data = map(data, my_function)) %>%
unnest()
Upvotes: 2
Reputation: 887951
Here is an option using tidyverse
library(dplyr)
vpg %>%
group_by_at(names(.)[1:3]) %>%
mutate(new = case_when(action == 0 ~ remove_outliers(stuff), TRUE ~ stuff))
Upvotes: 2
Reputation: 5017
Try this solution:
Build a function incorporating function remove_outliers
working by customer+code+year
f<-function(x,vpg)
{
select<-paste0(vpg$customer,vpg$code,vpg$year)==x
out<-suppressWarnings(cbind(vpg[select,c("customer","code","year")][1,],remove_outliers(vpg[select,"stuff"])))
return(out)
}
Iterate over all triplets customer+code+year
uniq<-as.character(unique(paste0(vpg$customer,vpg$code,vpg$year)))
bind_rows(lapply(uniq,f,vpg=vpg))
Upvotes: 1
Reputation: 12569
Here is a solution with data.table
:
library("data.table")
setDT(vpg)
vpg[, new:=stuff][action==0, new:=remove_outliers(stuff), by=.(customer, code, year)]
Upvotes: 2