Reputation: 1641
I have two dataframes generated by the following code:
import datetime
def random_date(start, minutesList):
current = start
l = len(minutesList)
out_ = []
for min_ in minutesList:
curr = current + datetime.timedelta(minutes=min_)
out_.append(curr.strftime("%d/%m/%y %H:%M") )
return(out_)
startDate = datetime.datetime(2013, 9, 20,13,00)
minutesListUsages = [2, 5, 6, 35, 38, 45, 57]
minutesListLogins = [0, 1, 1.5, 3, 5.5, 24, 37, 37.5, 39.5, 45, 48, 53, 59, 60]
df_logins1 = pd.DataFrame([random_date(startDate,minutesListLogins),
[1] * len(random_date(startDate,minutesListLogins))]).transpose()
df_logins1.columns = ['date', 'id']
df_logins1
df_logins2 = pd.DataFrame([random_date(startDate,minutesListLogins),
[2] * len(random_date(startDate,minutesListLogins))]).transpose()
df_logins2.columns = ['date', 'id']
df_logins2
df_logins = df_logins1.append(df_logins2)
# Usages
df_usages1 = pd.DataFrame([random_date(startDate,minutesListUsages),
[1] * len(random_date(startDate,minutesListUsages))]).transpose()
df_usages1.columns = ['date', 'id']
df_usages1
df_usages2 = pd.DataFrame([random_date(startDate,minutesListUsages),
[2] * len(random_date(startDate,minutesListUsages))]).transpose()
df_usages2.columns = ['date', 'id']
df_usages2
df_usages = df_usages1.append(df_usages2)
I would like to indicate in df_logins
which login was associated with a usage from df_usage
. I would like to do this by id
. I say a login is associated with a usage if it is the closest, but predating login relative to a given usage.
Based on this definition, how can I identify logins that led to a usage by id
.
Thanks
Upvotes: 4
Views: 397
Reputation: 323226
You can using merge_asof
with by
and on
parameter
df_usages.date=pd.to_datetime(df_usages.date)
df_logins.date=pd.to_datetime(df_logins.date)
df_usages,df_logins=df_usages.sort_values('date').rename(columns={'date':'use_date'}),df_logins.sort_values('date').rename(columns={'date':'log_date'})
pd.merge_asof(df_usages,df_logins,left_on='use_date',right_on='log_date',by='id',direction = 'nearest')
Out[168]:
use_date id log_date
0 2013-09-20 13:02:00 1 2013-09-20 13:01:00
1 2013-09-20 13:02:00 2 2013-09-20 13:01:00
2 2013-09-20 13:05:00 1 2013-09-20 13:05:00
3 2013-09-20 13:05:00 2 2013-09-20 13:05:00
4 2013-09-20 13:06:00 1 2013-09-20 13:05:00
5 2013-09-20 13:06:00 2 2013-09-20 13:05:00
6 2013-09-20 13:35:00 1 2013-09-20 13:37:00
7 2013-09-20 13:35:00 2 2013-09-20 13:37:00
8 2013-09-20 13:38:00 1 2013-09-20 13:37:00
9 2013-09-20 13:38:00 2 2013-09-20 13:37:00
10 2013-09-20 13:45:00 1 2013-09-20 13:45:00
11 2013-09-20 13:45:00 2 2013-09-20 13:45:00
12 2013-09-20 13:57:00 1 2013-09-20 13:59:00
13 2013-09-20 13:57:00 2 2013-09-20 13:59:00
Upvotes: 1