Reputation: 771
I'm trying to fill an empty array with one row of zeroes. This is apparently a lot harder said than done. This is my attempt:
Array = pd.DataFrame(columns=["curTime", "HC", "AC", "HG", "HF1", "HF2", "HF3", "HF4", "HF5", "HF6",
"HF7", "HF8", "HF9", "HF10", "HF11", "HF12", "HD1", "HD2", "HD3", "HD4", "HD5", "HD6",
"AG", "AF1", "AF2", "AF3", "AF4", "AF5", "AF6", "AF7", "AF8", "AF9", "AF10", "AF11", "AF12",
"AD1", "AD2", "AD3", "AD4", "AD5", "AD6"])
appendArray = [[0] * len(Array.columns)]
Array = Array.append(appendArray, ignore_index = True)
This however creates a row that stacks another 41 columns to the right of my existing 41 columns, and fills them with zeroes, while the original 41 columns get a "NaN" value.
How do I most easily do this?
Upvotes: 0
Views: 33
Reputation: 323226
You can using pd.Series
within the append
Array.append(pd.Series(appendArray,index=Array.columns), ignore_index = True)
Out[780]:
curTime HC AC HG HF1 HF2 HF3 HF4 HF5 HF6 ... AF9 AF10 AF11 \
0 0 0 0 0 0 0 0 0 0 0 ... 0 0 0
1 0 0 0 0 0 0 0 0 0 0 ... 0 0 0
AF12 AD1 AD2 AD3 AD4 AD5 AD6
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
[2 rows x 41 columns]
Upvotes: 1