Reputation: 571
Im using this syntax to preallocate columns and assign 0 to all of them:
data['Base'] = 0
data['Base_Chg'] = 0
data['Base_5D_Chg'] = 0
data['Year_Low'] = 0
data['Year_High'] = 0
data['Market_Cap'] = 0
data['PE_Ratio'] = 0
data['SMA_50'] = 0
data['SMA_100'] = 0
data['SMA_200'] = 0
data['RSI'] = 0
data['ADX'] = 0
data['ATR'] = 0
data['STDEV'] = 0
Is there any way of doing the same thing with fewer lines of code?
Using pandas in python.
Thx!
Upvotes: 3
Views: 123
Reputation: 169274
You can use keyword argument unpacking with an OrderedDict.
import collections as co
od = co.OrderedDict({'Base':0,'Base_Chg':0,'Base_5D_Chg':0})
data.assign(**od)
Result:
In [18]: data.assign(**od)
Out[18]:
a Base Base_Chg Base_5D_Chg
0 1 0 0 0
1 2 0 0 0
2 3 0 0 0
Upvotes: 3
Reputation: 93151
At the very least, you still have to write out all the new columns' names.
You can use a loop:
columns=['Base', 'Base_Chg', 'Base_5D_Chg', 'Year_Low', 'Year_High', 'Market_Cap', 'PE_Ratio', 'SMA_50', 'SMA_100', 'SMA_200', 'RSI', 'ADX', 'ATR', 'STDEV']
for col in columns:
df[col] = 0
Or pd.concat
:
columns=['Base', 'Base_Chg', 'Base_5D_Chg', 'Year_Low', 'Year_High', 'Market_Cap', 'PE_Ratio', 'SMA_50', 'SMA_100', 'SMA_200', 'RSI', 'ADX', 'ATR', 'STDEV']
new_df = pd.DataFrame(0, columns=columns, index=df.index)
df = pd.concat([df, new_df], axis=1)
Test to see which one is faster for your use case.
Upvotes: 1
Reputation: 23099
assuming your column names are in a list, we create a dictionary with the key as the column name as 0 as the value. We then do a caretersian join onto df1.
cols = ['Base',
'Base_Chg',
'Base_5D_Chg',
'Year_Low',
'Year_High',
'Market_Cap',
'PE_Ratio',
'SMA_50',
'SMA_100',
'SMA_200',
'RSI',
'ADX',
'ATR',
'STDEV']
df1 = pd.DataFrame({'A' : [0,1,2,3]}) # your original dataframe.
df2 = pd.DataFrame(dict(zip(cols,[0] * len(cols))),index=[0])
#new dataframe from list of cols.
df3 = pd.merge(df1.assign(key='key'),df2.assign(key='key'),how='outer').drop('key',axis=1)
#merge of your old dataframe and new.
print(df1)
A
0 0
1 1
2 2
3 3
print(df2)
Base Base_Chg Base_5D_Chg Year_Low Year_High Market_Cap PE_Ratio \
0 0 0 0 0 0 0 0
SMA_50 SMA_100 SMA_200 RSI ADX ATR STDEV
0 0 0 0 0 0 0 0
print(df3)
A Base Base_Chg Base_5D_Chg Year_Low Year_High Market_Cap PE_Ratio \
0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
2 2 0 0 0 0 0 0 0
3 3 0 0 0 0 0 0 0
SMA_50 SMA_100 SMA_200 RSI ADX ATR STDEV
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
Upvotes: 1