Reputation: 548
I have a df and I want to filter out a column based on a grouping. I want to keep group by combinations ((cc
, odd
, tree1
, and tree2
) if day > 4, then keep it, otherwise drop it
df = pd.DataFrame()
df['cc'] = ['BB', 'BB', 'BB', 'BB','BB', 'BB','BB', 'BB', 'DD', 'DD', 'DD', 'DD', 'DD', 'DD', 'DD', 'DD', 'ZZ', 'ZZ', 'ZZ', 'ZZ', 'ZZ', 'ZZ', 'ZZ', 'ZZ']
df['odd'] = [3434, 3434, 3434, 3434, 3435, 3435, 3435, 3435, 3434, 3434, 3434, 3434, 3435, 3435, 3435, 3435, 3434, 3434, 3434, 3434, 3435, 3435, 3435, 3435]
df['tree1'] = ['ASP', 'ASP', 'ASP', 'ASP', 'SAP', 'SAP', 'SAP', 'SAP', 'ASP', 'ASP', 'ASP', 'ASP', 'SAP', 'SAP', 'SAP', 'SAP', 'ASP', 'ASP', 'ASP', 'ASP', 'SAP', 'SAP', 'SAP', 'SAP']
df['tree2'] = ['ATK', 'ATK','ATK','ATK','ATK','ATK','ATK','ATK', 'ATK', 'ATK','ATK','ATK','ATK','ATK','ATK','ATK', 'ATK', 'ATK','ATK','ATK','ATK','ATK','ATK','ATK']
df['day'] = [1, 2, 3, 4, 3, 4, 5, 6, 2, 3, 4, 5, 1, 3, 5, 7, 1, 2, 6, 8, 2, 4, 6, 8]
df
I tried this but this drops any row with day value smaller than 4
df_grouped = df.groupby(['cc', 'odd', 'tree1', 'tree2']).filter(df['day'] > 4)
I get this error TypeError: 'Series' object is not callable
And tried this
df_grouped = df.groupby(['cc', 'odd', 'tree1', 'tree2']).filter(lambda x: x['day'] > 4)
I get this error TypeError: filter function returned a Series, but expected a scalar bool
.
I searched and tried to solve these errors but the proposed solution did not work for me. I would like to get a df as below:
df1 = pd.DataFrame()
df1['cc'] = ['BB', 'BB','BB', 'BB', 'DD', 'DD', 'DD', 'DD', 'DD', 'DD', 'DD', 'DD', 'ZZ', 'ZZ', 'ZZ', 'ZZ', 'ZZ', 'ZZ', 'ZZ', 'ZZ']
df1['odd'] = [3435, 3435, 3435, 3435, 3434, 3434, 3434, 3434, 3435, 3435, 3435, 3435, 3434, 3434, 3434, 3434, 3435, 3435, 3435, 3435]
df1['tree1'] = ['SAP', 'SAP', 'SAP', 'SAP', 'ASP', 'ASP', 'ASP', 'ASP', 'SAP', 'SAP', 'SAP', 'SAP', 'ASP', 'ASP', 'ASP', 'ASP', 'SAP', 'SAP', 'SAP', 'SAP']
df1['tree2'] = ['ATK','ATK','ATK','ATK', 'ATK', 'ATK','ATK','ATK','ATK','ATK','ATK','ATK', 'ATK', 'ATK','ATK','ATK','ATK','ATK','ATK','ATK']
df1['day'] = [3, 4, 5, 6, 2, 3, 4, 5, 1, 3, 5, 7, 1, 2, 6, 8, 2, 4, 6, 8]
df1
I have tried to use the logical function of any
but I could not make it work, it returns only True
or False
to me instead of a filtered dataframe.
Upvotes: 4
Views: 2198
Reputation: 393913
IIUC you want:
In[116]:
df_grouped = df.groupby(['cc', 'odd', 'tree1', 'tree2']).filter(lambda x: (x['day'] > 4).any())
df_grouped
Out[116]:
cc odd tree1 tree2 day
4 BB 3435 SAP ATK 3
5 BB 3435 SAP ATK 4
6 BB 3435 SAP ATK 5
7 BB 3435 SAP ATK 6
8 DD 3434 ASP ATK 2
9 DD 3434 ASP ATK 3
10 DD 3434 ASP ATK 4
11 DD 3434 ASP ATK 5
12 DD 3435 SAP ATK 1
13 DD 3435 SAP ATK 3
14 DD 3435 SAP ATK 5
15 DD 3435 SAP ATK 7
16 ZZ 3434 ASP ATK 1
17 ZZ 3434 ASP ATK 2
18 ZZ 3434 ASP ATK 6
19 ZZ 3434 ASP ATK 8
20 ZZ 3435 SAP ATK 2
21 ZZ 3435 SAP ATK 4
22 ZZ 3435 SAP ATK 6
23 ZZ 3435 SAP ATK 8
So this will filter out the groups where within the group none of the 'day'
values are greater than 4
timings:
%timeit df[df.day.gt(4).groupby([df.cc, df.odd, df.tree1, df.tree2]).transform('any')]
%timeit df.groupby(['cc', 'odd', 'tree1', 'tree2']).filter(lambda x: (x['day'] > 4).any())
%timeit df[df.assign(key=df.day > 4).groupby(['cc', 'odd', 'tree1', 'tree2']).key.transform('any')]
100 loops, best of 3: 5.9 ms per loop
100 loops, best of 3: 5.42 ms per loop
100 loops, best of 3: 3.62 ms per loop
So @coldspeed's first method is the fastest here
Upvotes: 2
Reputation: 402263
Now that I've understood what you want, let's try something like transform
+ any
:
df[df.assign(key=df.day > 4)
.groupby(['cc', 'odd', 'tree1', 'tree2']).key.transform('any')
]
Or,
df[df.day.gt(4).groupby([df.cc, df.odd, df.tree1, df.tree2]).transform('any')]
cc odd tree1 tree2 day
4 BB 3435 SAP ATK 3
5 BB 3435 SAP ATK 4
6 BB 3435 SAP ATK 5
7 BB 3435 SAP ATK 6
8 DD 3434 ASP ATK 2
9 DD 3434 ASP ATK 3
10 DD 3434 ASP ATK 4
11 DD 3434 ASP ATK 5
12 DD 3435 SAP ATK 1
13 DD 3435 SAP ATK 3
14 DD 3435 SAP ATK 5
15 DD 3435 SAP ATK 7
16 ZZ 3434 ASP ATK 1
17 ZZ 3434 ASP ATK 2
18 ZZ 3434 ASP ATK 6
19 ZZ 3434 ASP ATK 8
20 ZZ 3435 SAP ATK 2
21 ZZ 3435 SAP ATK 4
22 ZZ 3435 SAP ATK 6
23 ZZ 3435 SAP ATK 8
Upvotes: 4