Reputation: 1301
I want to do some forces calculations between vertices and because the forces are symmetrical I have a list of vertice-pairs that need those forces added. I am sure it's possible with fancy indexing, but I really just can get it to work with a slow python for-loop. for symmetric reasons, the right-hand side of the index array needs a negative sign when adding the forces.
consider you have the vertice index array:
>>> I = np.array([[0,1],[1,2],[2,0]])
I = [[0 1]
[1 2]
[2 0]]
and the x,y forces array for each pair:
>>> F = np.array([[3,6],[4,7],[5,8]])
F = [[3 6]
[4 7]
[5 8]]
the wanted operation could be described as:
"vertice #0 sums the force vectors (3,6) and (-5,-8),
vertice #1 sums the force vectors (-3,-6) and (4,7),
vertice #2 sums the force vectors (-4,-7) and (5,8)"
Desired results:
[ 3 6 ] [ 0 0 ] [-5 -8 ] [-2 -2 ] //resulting force Vertice #0
A = [-3 -6 ] + [ 4 7 ] + [ 0 0 ] = [ 1 1 ] //resulting force Vertice #1
[ 0 0 ] [-4 -7 ] [ 5 8 ] [ 1 1 ] //resulting force Vertice #2
edit:
my ugly for-loop solution:
import numpy as np
I = np.array([[0,1],[1,2],[2,0]])
F = np.array([[3,6],[4,7],[5,8]])
A = np.zeros((3,2))
A_x = np.zeros((3,2))
A_y = np.zeros((3,2))
for row in range(0,len(F)):
A_x[I[row][0],0]= F[row][0]
A_x[I[row][1],1]= -F[row][0]
A_y[I[row][0],0]= F[row][1]
A_y[I[row][1],1]= -F[row][1]
A = np.hstack((np.sum(A_x,axis=1).reshape((3,1)),np.sum(A_y,axis=1).reshape((3,1))))
print(A)
A= [[-2. -2.]
[ 1. 1.]
[ 1. 1.]]
Upvotes: 1
Views: 117
Reputation: 53029
You can preallocate an array to hold the shuffled forces and then use the index like so:
>>> N = I.max() + 1
>>> out = np.zeros((N, 2, 2), F.dtype)
>>> out[I, [1, 0]] = F[:, None, :]
>>> np.diff(out, axis=1).squeeze()
array([[-2, -2],
[ 1, 1],
[ 1, 1]])
or, equivalently,
>>> out = np.zeros((2, N, 2), F.dtype)
>>> out[[[1], [0]], I.T] = F
>>> np.diff(out, axis=0).squeeze()
array([[-2, -2],
[ 1, 1],
[ 1, 1]])
Upvotes: 0
Reputation: 36765
Your current "push-style" interpretation of I
is
For row-index
k
inI
, take the forces fromF[k]
and add/subtract them toout[I[k], :]
I = np.array([[0,1],[1,2],[2,0]])
out = numpy.zeros_like(F)
for k, d in enumerate(I):
out[d[0], :] += F[k]
out[d[1], :] -= F[k]
out
# array([[-2, -2],
# [ 1, 1],
# [ 1, 1]])
However you can also change the meaning of I
on its head and make it "pull-style", so it says
For row-index
k
inI
, set vertexout[k]
to be the difference ofF[I[k]]
I = np.array([[0,2],[1,0],[2,1]])
out = numpy.zeros_like(F)
for k, d in enumerate(I):
out[k, :] = F[d[0], :] - F[d[1], :]
out
# array([[-2, -2],
# [ 1, 1],
# [ 1, 1]])
In which case the operation simplifies quite easily to mere fancy indexing:
out = F[I[:, 0], :] - F[I[:, 1], :]
# array([[-2, -2],
# [ 1, 1],
# [ 1, 1]])
Upvotes: 1
Reputation: 993
The way I understand the question, the values in the I
array represent the vortex number, or the name of the vortex. They are not an actual positional index. Based on this thought, I have a different solution that uses the original I
array. It does not quite come without loops, but should be OK for a reasonable number of vertices:
I = np.array([[0,1],[1,2],[2,0]])
F = np.array([[3,6],[4,7],[5,8]])
pos = I[:, 0]
neg = I[:, 1]
A = np.zeros_like(F)
unique = np.unique(I)
for i, vortex_number in enumerate(unique):
A[i] = F[np.where(pos==vortex_number)] - F[np.where(neg==vortex_number)]
# produces the expected result
# [[-2 -2]
# [ 1 1]
# [ 1 1]]
Maybe this loop can also be replaced by some numpy magic.
Upvotes: 0