Reputation: 95
My input is a pandas dataframe with strings inside:
>>> data
218.0
221.0
222.0
224.0 71,299,77,124
227.0 50,283,81,72
229.0
231.0 84,349
233.0
235.0
240.0 53,254
Name: Q25, dtype: object
now i want a shaped ( .reshape(-1,2) ) numpy array of ints for every row like that:
>>> data
218.0 []
221.0 []
222.0 []
224.0 [[71,299], [77,124]]
227.0 [[50,283], [81,72]]
229.0 []
231.0 [[84,349]]
233.0 []
235.0 []
240.0 [[53,254]]
Name: Q25, dtype: object
i dont know how to get there by vector operations. can someone help?
Upvotes: 1
Views: 984
Reputation: 294516
Not very cool, but accurate.
def f(x):
if x != '':
x = list(map(int, x.split(',')))
return list(map(list, zip(x[::2], x[1::2])))
else:
return []
s.apply(f)
0 []
1 [[71, 299], [77, 124]]
2 [[84, 349]]
dtype: object
Upvotes: 0
Reputation: 77027
You can use apply
, this isn't vector operation though
In [277]: df.val.fillna('').apply(
lambda x: np.array(x.split(','), dtype=int).reshape(-1, 2) if x else [])
Out[277]:
0 []
1 []
2 []
3 [[71, 299], [77, 124]]
4 [[50, 283], [81, 72]]
5 []
6 [[84, 349]]
7 []
8 []
9 [[53, 254]]
Name: val, dtype: object
Upvotes: 3