Reputation: 389
Here's some sample code:
library(quantmod)
library(dplyr)
stock.prices <- getSymbols(Symbols = 'AAPL', from = '2017-08-08', to = '2017-08-17', env = NULL)[,c(2,4)]
stock.dividends <- getDividends(Symbol = 'AAPL', from = '2017-08-08', to = '2017-08-17')
summary <- merge(stock.prices, stock.dividends)
summary <- data.frame(date=index(summary), coredata(summary))
summary <- mutate(summary, buy.price = ifelse(is.na(AAPL.div), NA, lag(AAPL.Close, 1)))
summary
It produces this data:
date AAPL.High AAPL.Close AAPL.div lag.buy.price
1 2017-08-08 161.83 160.08 NA NA
2 2017-08-09 161.27 161.06 NA NA
3 2017-08-10 160.00 155.32 0.63 161.06
4 2017-08-11 158.57 157.48 NA NA
5 2017-08-14 160.21 159.85 NA NA
6 2017-08-15 162.20 161.60 NA NA
7 2017-08-16 162.51 160.95 NA NA
I would like to append a column like so:
date AAPL.High AAPL.Close AAPL.div lag.buy.price sell.date
1 2017-08-08 161.83 160.08 NA NA NA
2 2017-08-09 161.27 161.06 NA NA NA
3 2017-08-10 160.00 155.32 0.63 161.06 2017-08-15
4 2017-08-11 158.57 157.48 NA NA NA
5 2017-08-14 160.21 159.85 NA NA NA
6 2017-08-15 162.20 161.60 NA NA NA
7 2017-08-16 162.51 160.95 NA NA NA
This finds the first date that I can sell to break even...I buy stock on 2017-08-09 to be eligible for the dividend the following day. I pay 161.06 per share. Having received the dividend, I'd now like to sell at >= 161.06. 2017-08-15 is the first day that I can do this.
I can run a for-loop to achieve this but it seems rather crude and inefficient.
Is there a way to produce the 'sell.date' column using dplyr?
Upvotes: 1
Views: 89
Reputation: 254
this solution is not entirely without a for loop, but i guess you meant a loop to compare each value (that part is vectorized here). Just in case you have more than one dividend that you observe this loop will be needed:
summary$sell.date<-as.Date(rep(NA,7))
for(i in 1:length(which(!is.na(summary$buy.price))))
summary$sell.date[which(!is.na(summary$buy.price))[i]]<- summary[c(rep(FALSE,which(!is.na(summary$buy.price))[i]-1),(summary[which(!is.na(summary$buy.price))[i]:nrow(summary),"AAPL.High"]>summary[!is.na(summary$buy.price),"buy.price"][i])),"date"][1]
it produces the following result:
date AAPL.High AAPL.Close AAPL.div buy.price sell.date
1 2017-08-08 161.83 160.08 NA NA <NA>
2 2017-08-09 161.27 161.06 NA NA <NA>
3 2017-08-10 160.00 155.32 0.63 161.06 2017-08-15
4 2017-08-11 158.57 157.48 NA NA <NA>
5 2017-08-14 160.21 159.85 NA NA <NA>
6 2017-08-15 162.20 161.60 NA NA <NA>
7 2017-08-16 162.51 160.95 NA NA <NA>
Upvotes: 1
Reputation: 28695
df[is.na(df$AAPL.div),'AAPL.div'] <- 0
sell.date <-
with(df, {
bought <- date > as.Date('2017-08-09')
date[which.max(bought & (AAPL.Close + cumsum(AAPL.div*bought)) > 161.06)]})
sell.date
#[1] "2017-08-15"
To add this as a column
df$sell.date <- ifelse(is.na(df$lag.buy.price), NA, sell.date)
df
# date AAPL.High AAPL.Close AAPL.div lag.buy.price sell.date
# 1: 2017-08-08 161.83 160.08 0.00 NA <NA>
# 2: 2017-08-09 161.27 161.06 0.00 NA <NA>
# 3: 2017-08-10 160.00 155.32 0.63 161.06 2017-08-15
# 4: 2017-08-11 158.57 157.48 0.00 NA <NA>
# 5: 2017-08-14 160.21 159.85 0.00 NA <NA>
# 6: 2017-08-15 162.20 161.60 0.00 NA <NA>
# 7: 2017-08-16 162.51 160.95 0.00 NA <NA>
data used
library(data.table)
df <- fread("
a date AAPL.High AAPL.Close AAPL.div lag.buy.price
1 2017-08-08 161.83 160.08 NA NA
2 2017-08-09 161.27 161.06 NA NA
3 2017-08-10 160.00 155.32 0.63 161.06
4 2017-08-11 158.57 157.48 NA NA
5 2017-08-14 160.21 159.85 NA NA
6 2017-08-15 162.20 161.60 NA NA
7 2017-08-16 162.51 160.95 NA NA
")[, -1]
Upvotes: 2
Reputation: 174
This should get you there:
library(quantmod)
library(tidyverse)
stock.prices <- getSymbols(Symbols = 'AAPL', from = '2017-08-08', to = '2017-08-17', env = NULL)[,c(2,4)]
stock.dividends <- getDividends(Symbol = 'AAPL', from = '2017-08-08', to = '2017-08-17')
summary <- merge(stock.prices, stock.dividends) %>%
as_tibble() %>%
rownames_to_column('date') %>%
coredata() %>%
mutate(buy.price = ifelse(is.na(AAPL.div), NA, lag(AAPL.Close, 1)))
new_summary <- summary %>%
rownames_to_column() %>%
mutate(rowname = as.numeric(rowname),
sell.date = map2_chr(rowname, buy.price, function(row, buy){
if(is.na(row) | is.na(buy)){
NA
}else{
data <- summary %>%
mutate(lt_buy = AAPL.High >= buy) %>%
filter(lt_buy == T, rowname > row)
min(data$date)
}
}))
First, you need to append the row numbers to the data frame. Then, you should use purrr::map
to iterate over the data (I changed your library(dplyr)
to library(tidyverse)
to get purrr
). purrr::map2
takes two vector inputs (in this case two columns of your data.frame
-- which I took the liberty to switching to a tibble
) and runs a function over those inputs. The anonymous function I wrote there filters your summary tibble
for dates beyond the input date and prices that are higher than the buy price. It then returns the minimum date meeting that criteria.
I also made some changes to your data setup so that it uses a pipe chain and a more tidy
type of structure.
Hope this helps!
Upvotes: 2