Reputation: 585
I have a dataframe:
df = pd.DataFrame({'No': [123,123,123,523,523,523,765],
'Type': ['A','B','C','A','C','D','A'],
'Task': ['First','Second','First','Second','Third','First','Fifth'],
'Color': ['blue','red','blue','black','red','red','red'],
'Price': [10,5,1,12,12,12,18],
'Unit': ['E','E','E','E','E','E','E'],
'Pers.ID': [45,6,6,43,1,9,2]
})
So it looks like this:
df
+-----+------+--------+-------+-------+------+---------+
| No | Type | Task | Color | Price | Unit | Pers.ID |
+-----+------+--------+-------+-------+------+---------+
| 123 | A | First | blue | 10 | E | 45 |
| 123 | B | Second | red | 5 | E | 6 |
| 123 | C | First | blue | 1 | E | 6 |
| 523 | A | Second | black | 12 | E | 43 |
| 523 | C | Third | red | 12 | E | 1 |
| 523 | D | First | red | 12 | E | 9 |
| 765 | A | First | red | 18 | E | 2 |
+-----+------+--------+-------+-------+------+---------+
then I created a pivot table:
piv = pd.pivot_table(df, index=['No','Type','Task'])
Result:
Pers.ID Price
No Type Task
123 A First 45 10
B Second 6 5
C First 6 1
523 A Second 43 12
C Third 1 12
D First 9 12
765 A Fifth 2 18
As you can see, problems are:
multiple columns are gone (Color and Unit)
The order of the columns Price and Pers.ID is not the same as in the original dataframe.
I tried to fix this by executing:
cols = list(df.columns)
piv = pd.pivot_table(df, index=['No','Type','Task'], values = cols)
but the result is the same.
I read other posts but none of them matched my problem in a way that I could use it.
Thank you!
EDIT: desired output
Color Price Unit Pers.ID
No Type Task
123 A First blue 10 E 45
B Second red 5 E 6
C First blue 1 E 6
523 A Second black 12 E 43
C Third red 12 E 1
D First red 12 E 9
765 A Fifth red 18 E 2
Upvotes: 3
Views: 7060
Reputation: 863166
I think problem is in pivot_table
default aggregate function is mean
, so strings columns are excluded. So need custom function, also order is changed, so reindex
is necessary:
f = lambda x: x.sum() if np.issubdtype(x.dtype, np.number) else ', '.join(x)
cols = df.columns[~df.columns.isin(['No','Type','Task'])].tolist()
piv = (pd.pivot_table(df,
index=['No','Type','Task'],
values = cols,
aggfunc=f).reindex(columns=cols))
print (piv)
Color Price Unit Pers.ID
No Type Task
123 A First blue 10 E 45
B Second red 5 E 6
C First blue 1 E 6
523 A Second black 12 E 43
C Third red 12 E 1
D First red 12 E 9
765 A Fifth red 18 E 2
Another solution with groupby
and same aggregation function, ordering is not problem:
df = (df.groupby(['No','Type','Task'])
.agg(lambda x: x.sum() if np.issubdtype(x.dtype, np.number) else ', '.join(x)))
print (df)
Color Price Unit Pers.ID
No Type Task
123 A First blue 10 E 45
B Second red 5 E 6
C First blue 1 E 6
523 A Second black 12 E 43
C Third red 12 E 1
D First red 12 E 9
765 A Fifth red 18 E 2
But if need set first 3 columns to MultiIndex
only:
df = df.set_index(['No','Type','Task'])
print (df)
Color Price Unit Pers.ID
No Type Task
123 A First blue 10 E 45
B Second red 5 E 6
C First blue 1 E 6
523 A Second black 12 E 43
C Third red 12 E 1
D First red 12 E 9
765 A Fifth red 18 E 2
Upvotes: 4