Reputation: 89
I have a 3-dimensional array called temprSubset
that I have taken the average of across 2 dimensions.
code:
f=MFDataset(filenames)
temprSubset = f.variables['tc'][ : , latitude_lower_limit:latitude_upper_limit , longitude_lower_limit:longitude_upper_limit,]
tempavg1=temprSubset.mean(axis=tuple(range(0,2)))
I want to plot the standard deviation curve for each average in tempavg1 array but I am lost.
Upvotes: 0
Views: 1228
Reputation: 4151
The easy way is to use the hist
function. The choice of the number of bins could significantly change the shape of the graph.
Another method, which gives a smooth curve, is the kernel density estimation. The choice of the bandwidth could also change the shape of the obtained graph.
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
# Generate some data
data = np.random.normal( size=(5, 50, 150) ) # a random 3D array
average_axes01 = data.mean(axis=(0, 1))
# Using the Kernel density estimation:
from scipy.stats import gaussian_kde
prob_density = gaussian_kde(average_axes01)
std = average_axes01.std()
x_fine = np.linspace(-3*std, 3*std, 29)
probs = prob_density(x_fine)
plt.plot(x_fine, probs, 'r', linewidth=2);
# Using the histogram:
plt.hist(average_axes01, bins=7, normed=True, alpha=.4)
plt.ylabel('probability density function'); plt.xlabel('values');
Upvotes: 1