Reputation: 423
I have a DataFrame like:
Code Date sales
1 2/2013 10
1 3/2013 11
2 3/2013 12
2 4/2013 14
...
I want to convert it into a DataFrame with a timeline, code, and sales of each type of item:
Date Code Sales1 Code Sales2
2/2013 1 10 NA NA
3/2013 1 11 2 12
4/2013 NA NA 2 14
....
or into a simpler way:
Date Code Sales1 Date Code Sales2 .....
2/2013 1 10 3/2013 2 12
3/2013 1 11 4/2013 2 14
or even into the simplest way, splitting into many small DataFrames
Upvotes: 1
Views: 63
Reputation: 423
Actually, I was stupid to split the data that way, I rethink and solve the problem with the pivot_table
pd.pivot_table(df, values = ['sales'], index = ['code'], columns = ['date'])
and the result should be like.
sum
date 2/2013 3/2013 4/2013 ....
code
1 10 11 NaN
2 NaN 12 14
...
Upvotes: 0
Reputation: 323236
IIUC using concat
with the groupby
result
df.index=df.groupby('Code').cumcount()# create the key for concat
pd.concat([x for _,x in df.groupby('Code')],1)
Out[392]:
Code Date sales Code Date sales
0 1 2/2013 10 2 3/2013 12
1 1 3/2013 11 2 4/2013 14
Upvotes: 2